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Abstract: We analyzed 28-year-long monthly oxygen isotope composition of precipitation (δ18Op)
data from Punta Arenas (Chile) on the leeward side of the Andes to understand how different
synoptic weather types and moisture transport pathways influence δ18Op variability in this region.
Combining weather station 6 h precipitation data and atmospheric back trajectories, we found
that in such a region where the atmospheric circulation pattern is dominated by very strong
westerlies, an increased monthly proportion of easterly-delivered precipitation—with the air-mass
trajectory path evading the influence of Andean “isotopic rain shadow” and having less rainout en
route—would increase δ18Op. These synoptic easterlies are a result of quasi-stationary blocking-like
flow that are an important but underappreciated part of regional circulation patterns and climate. In
addition, synoptic easterlies are more often associated with heavy precipitation events as shown by
weather station data and higher deuterium excess that indicates weaker post-condensation raindrop
re-evaporation. Therefore, our analysis demonstrated the process link between the frequency of
synoptic weather types characterized by blocking-like flow and temporal variations in δ18Op in
Southern Patagonia. We conclude that isotope proxy paleo-records in this region could provide
unique insights into the behaviors and dynamics of the large-scale Southern Hemisphere Westerly
Winds over long timescales.

Keywords: Southern Patagonia; stable isotopes; precipitation; back-trajectory; synoptic weather;
moisture transport; Southern Hemisphere Westerly Winds

1. Introduction

Stable isotopes in water (δ18O and δ2H) have been widely used as geochemical tracers for the
hydrological cycle. Isotopic fractionation occurs in water molecules during phase transitions modulated
by transport and also biotic processes, leading to distinct variations in isotopic compositions across
the hydrosphere [1]. Of particular importance is the isotopic composition in precipitation (most of
studies focus on oxygen isotopes in precipitation, δ18Op) with a large number of data collected
since the 1950s [2]. The δ18Op data showed empirical relationships with climatic variables such as
air temperature in the high-latitude regions and precipitation amount in the tropical regions [3].
The Rayleigh distillation model that depicts isotopic fractionations in air mass rainout processes
could explain much of δ18Op variability at various temporal and spatial scales in both observations
and models [3–5]. These well-established relationships between δ18Op and climatic variables led
to applying stable isotope proxies in terrestrial climate archives to reconstruct past hydrological
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and climatic conditions (e.g., [6–10]). Over geological timescales, because of the strong connections
among topography, climate, and atmospheric circulations, stable isotopes have also been used as
proxies for terrain elevation to reconstruct landscape evolution (e.g., [11,12]). However, studies also
revealed that the drivers controlling δ18Op variations are more complex and that air mass origin and
history (e.g., [13–15]), in-cloud and below-cloud processes (e.g., [16–18]), as well as moisture recycling
(e.g., [19–21]), are also important in some regions. It is particularly relevant in regions with complex
terrain, where regional topographic features can additionally influence air mass transport, water vapor
condensation, and consequently, the isotopic composition of precipitation [14,22–26].

Monitoring temporal variations in δ18Op provides an excellent opportunity to elucidate the
confounding factors that influence δ18Op for a specific location or region. For many studies of this
kind, precipitation samples were collected for individual events or at daily intervals. Rather than
simply analyzing the relationships between δ18Op and local meteorological parameters, event-based
studies usually link the δ18Op signal in each individual sample with the origin and history of an
air mass preceding that event or a specific synoptic weather type [14,15,19,27–30], using tools such
as the U.S. National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory
(ARL) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model [31]. The rationale
behind this practice is that the δ18Op signal reflects isotopic fractionation that occurs in evaporative
source and during moisture transport more than local meteorology [32], although precipitation
type (convective vs. stratiform) is also an important local factor affecting δ18Op in the tropical
and mid-latitude regions [18,33]. Another important precipitation isotope database is the Global
Network of Isotopes in Precipitation (GNIP) that archives isotope data from monthly-composited
precipitation [34]. Because isotope data from monthly-composited precipitation have mixed isotopic
signals from multiple precipitation events during that month, studies using GNIP data usually focus
on precipitation isotope seasonality, long-term trends, empirical relationships with climatic variables,
and statistics of meteoric water lines inferred from each individual GNIP station [4]. The influence
of moisture sources and transport pathways on individual GNIP monthly δ18Op observations is
rarely explored [35] due to the mixed signals from multiple precipitation events that make identifying
process-based mechanisms difficult [14]. In fact, some of the GNIP stations have observational data
over several decades. These observational data encompass longer-term δ18Op variability originated
from changes in prevailing synoptic-scale circulation patterns than event-based data that usually only
span one or a few years.

Here, we developed a new framework to leverage the value of GNIP monthly-composited δ18Op

data in identifying process-based synoptic mechanisms that control δ18Op variability. We analyzed
28-year-long GNIP monthly δ18Op data from Punta Arenas (Chile) in Southern Patagonia, a region
surrounded by ocean and with complex terrain. Southern Patagonia is in the core belt of the
Southern Hemisphere Westerly Winds (SHWWs) that exert strong and year-round influence on
regional climate [36]. Previous isotope-based paleoclimate and paleoaltimetry studies in this region
(and Northern Patagonia) assumed that the westerlies—that pass over the Andes—are the only major
moisture transport path for the eastern side of Patagonia [12,37,38] but did not consider the role of
synoptic-scale circulation patterns within the SHWW belt such as the quasi-stationary easterlies and
northerlies [39,40]. We combined weather station precipitation data and the HYSPLIT back-trajectory
model to quantify the proportions of precipitation attributed to different trajectory clusters that
represent distinct synoptic weather types in this region for each month. This would allow us to extract
the effect of synoptic weather types and moisture transport pathways on monthly-composited δ18Op.
We discussed how isotope proxy paleo-records in this region could reflect the changes in the frequency
of these synoptic weather types that in turn elucidate the SHWW behaviors and dynamics.

2. Regional Setting

Punta Arenas is the capital city of Chile’s southernmost Magallanes Region, and one of the
southernmost cities in the world. The city is situated with the Strait of Magellan to the east and
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low-lying hills and plateaus to the west. The GNIP Punta Arenas station (53.00◦ S, 70.83◦ W, 38 m above
sea level (asl)) is located at Punta Arenas airport (PUQ), ~20 km north of the main city. The local terrain
to the west is flat at the airport without low-lying hills and plateaus, unlike the main city.

Punta Arenas is in the unique topographic context of Southern Patagonia where climate is strongly
influenced by the interaction between the strong SHWWs and the north-to-south oriented Andean
mountain ranges (Figure 1). A large precipitation gradient occurs from the Pacific to Atlantic coasts as
a result of uplift and downslope subsidence of westerlies and their embedded disturbances [36,41].
Therefore, Punta Arenas (including its airport) is clearly in the Andean rain shadow [42], although the
Andean topographic barrier in the west is lower, with most terrain elevations less than 1000 m asl,
than the rest of Patagonia (Figure 1). The mean annual precipitation amount in Punta Arenas airport
was 402 mm, based on data from the Global Historical Climatology Network (GHCN) Version 2 [43]
during the period 1990–2017. It is an order of magnitude less than Andean locations in the same latitude
where mean annual precipitation amounts are more than 3000 mm [44,45]. Our analysis of combined
wind sensor and precipitation data from airport weather station indicates that “local” westerlies
(NW, WNW, W, WSW, and SW) account for 72% of total hours but only 41% of total precipitation
amount during the period 1990–2017 (Figure A1a,b). In terms of the quotient between precipitation
and frequency of the respective “local” wind direction [46], however, “local” non-westerlies are over
three times more effective in bringing precipitation to Punta Arenas (Figure A1c). This reinforces
the prevailing rain shadow effect on the leeward side of the Andes, while westerlies are still able,
although less effectively, to deliver a large proportion of moisture to Punta Arenas.
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Figure 1. Digital elevation map of Southern Patagonia. Also shown are major cities (cyan triangles)
and field sites (red dots) discussed in this paper, and the elevation contour of 1000 m asl. The digital
elevation model is from the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) at
30-arc-second resolution [47].

The influence of the SHWWs on Punta Arenas is year-round. During austral summer, the SHWWs
form a condensed and strong belt between 45◦ S and 55◦ S and maximum wind speeds are reached in
Punta Arenas. During austral winter, the SHWW belt expands northward as far as 30◦ S while the
wind speed only relatively weakens in the south, including at Punta Arenas [48]. Despite the seasonal
variations in the SHWWs, the seasonality of precipitation in Punta Arenas is very weak with only
slightly more precipitation during austral autumn [49]. The mean annual air temperature in Punta
Arenas airport was 6.2 ◦C, while the mean warmest month (January) air temperature was 10.8 ◦C and
the mean coldest month (July) air temperature was 1.6 ◦C during the period 1990–2017 based on data
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from GHCN Version 3 [43]. Based on the Köppen−Geiger climate classification map [50], Punta Arenas
is located at the boundary between Tundra climate (ET) and Subpolar oceanic climate (Cfc) zone.

Inter-annual or long-term climate variability in Southern Patagonia has been tied to the large-scale
Southern Annular Mode (SAM), which is defined as the difference in zonal mean sea level pressure
(SLP) between 40◦ S and 65◦ S [51]. This pressure gradient controls hemisphere-wide strength and
latitudinal position of the SHWWs, and consequently, their associated storm tracks. Instrumental and
reanalysis data suggest the leading role of the SAM on both temperature and precipitation patterns
in broad regions of the extratropical Southern Hemisphere, including Southern Patagonia [48,52].
Specifically, a positive phase of the SAM, through the stronger and southwardly positioned SHWWs,
increases air temperature but only marginally decreases precipitation in the domain of Punta Arenas,
and vice versa [48,52,53]. The weak influence of the SAM on precipitation in Southern Patagonia is
partly due to the fact that the SAM is a hemisphere-wide climate mode, while regional precipitation
variability is mainly controlled by synoptic-scale processes.

3. Data

3.1. GNIP Isotope Data

Monthly precipitation isotope data from the GNIP Punta Arenas (airport) station are available
from 1990 to 2017 with some short data gaps (Table S1) [34]. In total, there are 298 individual
δ18Op measurements. The dataset contains some very high or even positive δ18Op values after 2002
(Figure 2b), which have been pointed out previously [49]. These samples likely experienced evaporation
for unknown reasons, and the reason why these very high δ18Op values only appeared after 2002 is
unknown. Since 2010, GNIP Punta Arenas station has started to label isotope data that showed a hint
of sample evaporation if the calculated deuterium excess (d-excess, defined as δ2H − 8 × δ18O) value
was below zero, although some of these potential problematic data were not necessarily impacted
by sample evaporation, as d-excess usually has a relatively large scatter, and a value lower than
zero is not unusual in maritime climates [1] such as in Punta Arenas. For the following HYSPLIT
analysis, we filtered out GNIP data by removing those δ18Op data that were above −3%� or that
had corresponding d-excess below −10%� (Figure 2a). These criteria were subjectively chosen but
reasonable as δ18Op and d-excess values falling in these ranges are indeed too extreme to occur in
monthly-composited precipitation at this latitude. Another GNIP station in Ushuaia (Argentina),
located ~250 km southeast of Punta Arenas (see Figure 1), does not have any δ18Op data above −6.8%�

during its monitoring period 1981–2002. These two stations have a similar climate, yet Punta Arenas
has a weighted mean annual δ18Op value 2%�–3%� higher than Ushuaia; the exact value depends on
how the potential outliers in both datasets were treated [49]. Considering this 2%�–3%� offset would
justify our conservative cut-off value (−3%�) for δ18Op. There are a few data with d-excess below −10%�

in Ushuaia likely due to sample evaporation as well, but these data only occurred before 1988 and were
not an intermittent and common feature. This observation would also justify our cut-off value (−10%�)
for d-excess. Nonetheless, we cannot rule out the small possibility that a few of these anomalously high
δ18Op or low d-excess values are naturally occurring. If they were, the collected precipitation samples
might be caused by a dominant contribution of local convective precipitation [18,33] or by a significant
role of raindrop post-condensation re-evaporation [16,28]. Both mechanisms would underplay the role
of moisture transport pathway in shaping the δ18Op value, thus removing a few of such values does not
affect our analysis on robust data. We also removed two very low monthly δ18Op values. These two
data points appear out of bound of typical observations (Figure 2a) and likely suggest additional
factors that are not considered in our HYSPLIT framework; otherwise, these two extremes would
have skewed the analysis. After the step of data filtering (all filtered out data are listed in Table S1),
we obtained a final dataset with 265 δ18Op measurements. Each δ18Op datum has a corresponding
d-excess value calculated from its paired δ2Hp (hydrogen isotope composition of precipitation) datum.
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Figure 2. Summary of Global Network of Isotopes in Precipitation (GNIP) precipitation isotope data
from Punta Arenas [34]. (a) Scatter plot between monthly δ2Hp and δ18Op and the Global Meteoric Water
Line (GMWL). (b) Long-term variations in monthly δ18Op during the period 1990–2017. Open dots
in (a) and (b) are the raw data points that were excluded from the analysis hereafter (see Section 3.1
and Table S1 for details). (c) Scatter plot between monthly δ18Op and Global Historical Climatology
Network (GHCN) monthly air temperature and their linear regression line. The use of GHCN monthly
air temperature data [43] rather than GNIP monthly air temperature data is due to several potential
erroneous data recordings in the GNIP database (see Figure A2d for details). One data gap in GHCN
(February 2011) is filled by GNIP data. (d) Scatter plot between monthly δ18Op and Punta Arenas airport
monthly cumulative precipitation (calculated from the sum of all 6 h precipitation data for each month;
see Section 3.2 for details). There are 6 individual months during which precipitation data have temporal
gaps, and these data are replaced by GHCN monthly precipitation amount data (see Figure A2a). In (c)
and (d), symbols are color-coded to represent different austral seasons: summer (December–February),
autumn (March–May), winter (June–August), and spring (September–November).

Among the selected data, it is clear that the monthly δ18Op value has a significant, though weak,
linear correlation (p < 0.001) with monthly air temperature (Figure 2c), but not monthly precipitation
amount (Figure 2d). A linear regression yields the relationship between monthly δ18Op and monthly
air temperature (T) as:

δ18Op = 0.40 (±0.04) × T − 12.08 (±0.30) (r = 0.50), (1)

where data for T are from GHCN version 3 [43] (Figure 2c). The observed seasonality in δ18Op is
a prevalent phenomenon across the mid- and high-latitude regions even in maritime climate [1].
This δ18Op seasonality is driven by multiple processes, including changing moisture source region and
condition as well as changing transport path and condensation history of water vapor among different
seasons via the Rayleigh mechanism [1,4,32]. These net effects on δ18Op can be simply summarized
by the empirical correlation with local air temperature. However, monthly air temperature is no
more strongly correlated with δ18Op for summer (December–February; DJF) (p = 0.52) and winter
(June–August; JJA) (p = 0.67), and explains less variance in δ18Op for autumn (March–May; MAM)
(r = 0.38, p < 0.01) and spring (September–November; SON) (r = 0.38, p < 0.01). We thus define the
δ18Op residual (δ18Oe

p) as the observed δ18Op value (δ18Oo
p) minus the regressed δ18Op value (δ18Or

p)
obtained in Equation (1) as:

δ18Oe
p= δ18Oo

p − δ
18Or

p, (2)
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which allows us to explore other drivers controlling monthly δ18Op variability that are unrelated to
δ18Op seasonality and/or air temperature. This approach is similar to but not the same as the multivariate
regression approach by Krklec and Domínguez-Villar [54], who included both air temperature and
monthly percentages of different moisture sources into their multivariate models.

3.2. Weather Station Precipitation Data

Punta Arenas airport cumulative precipitation amount data at 6 h intervals (at UTC time 00:00,
06:00, 12:00, and 18:00) are provided by the Dirección Meteorológica de Chile and are available for
public download on [55]. The data were collected by Punta Arenas airport weather station. This same
weather station also reports monthly climatology data to the GHCN (as presented in Section 3.1) and
operates isotope sample collection for the GNIP [56]. The quality of 6 h cumulative precipitation data
is robust as we find the monthly cumulative precipitation amount data, calculated from the sum of
all 6 h precipitation data for each month, are clustering on the 1:1 line when plotted against either
reported GHCN or GNIP monthly precipitation amount data (Figure A2a,b). Precipitation events
(at least 0.1 mm) were recorded during 17% of all 6 h intervals. With 6 h cumulative precipitation data,
we can explicitly know the time and precipitation amount of each precipitation event that together
constitute the monthly precipitation sample that GNIP measured for isotopic composition.

4. Methods

We ran the HYSPLIT back-trajectory model to reconstruct the origin and path of air mass
that resulted in precipitation event recorded by the weather station described above. We employed
a Python-based package for HYSPLIT (PySPLIT) [57] to achieve a fast and flexible workflow in
trajectory generation and analysis. Five-day (120 h) air mass backward trajectory was generated
four times (at UTC time 00:00, 06:00, 12:00, and 18:00) at initial back-trajectory heights at 500, 1000,
1500, and 2000 m above ground level (agl) for each day from 1990 to 2017 to match with the 6 h
cumulative precipitation data from the weather station. The duration of 120 h of back-trajectory
modeling was chosen as it was long enough to allow trajectory clustering as introduced below and
short enough to save computation capacity. For gridded meteorological datasets, we used the Global
Data Assimilation System (GDAS) reanalysis dataset (1.0◦ spatial resolution) for the period 2005–2017.
For the period 1990–2004 during which the GDAS dataset was not available, we used the National
Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR)
reanalysis dataset (2.5◦ spatial resolution) [58]. Both datasets are archived on [59]. Based on the 6 h
cumulative precipitation data from the weather station, trajectory files that are not associated with
precipitation events were deleted. Then, all remaining trajectory files are associated with documented
precipitation events. There are four trajectories with different initial back-trajectory heights for each
event. For GDAS-based trajectories, only one trajectory at the height level that has the highest initial
relative humidity was chosen for each event to better capture the level of precipitating air mass.
Overall, 16%, 26%, 24%, and 34% of precipitation events have the highest relative humidity at the level
of 500 m, 1000 m, 1500 m, and 2000 m, respectively. For NCEP/NCAR-based trajectories, this selection
criterion was not reliable, as 64% of all events have the highest relative humidity at 500 m due to the
limitation of the coarser-resolution reanalysis dataset; thus, we considered all cases of different initial
back-trajectory heights specifically in the following analysis. We employed this simple but still realistic
representation of precipitating air masses widely employed in literature [16,27,54,60,61], while a more
complex approach has been applied using remote sensing data [32] or in an idealized framework [62].
To visualize the general trajectory pathway, we generated trajectory frequency contours by binning all
precipitation-producing trajectory end point data in each 1.0◦ grid.

We grouped all generated trajectories into four clusters based on where trajectories entered into
Southern Patagonian landmass. Although HYSPLIT GUI has provided a k-means clustering algorithm,
it suggests that only a large number of clusters are appropriate to represent all trajectories in an
acceptably low total spatial variance. To simplify the solution, we grouped trajectories based on the
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locations of back-trajectory end points when trajectories came across the eastern, northern, western,
and southern boundaries of Southern Patagonian landmass (Figure A3). These trajectories were
then clustered as the distal easterlies, northerlies, westerlies, and southerlies, respectively (Figure 3).
These four trajectory pathway clusters represent major synoptic weather types in this region (see [45]).
Here the word “distal” is to discern our definition of air mass transport direction that is based on
modeling its back-trajectory over a course of time from transport direction defined based on “local”
weather station wind direction (e.g., Figure A1 introduced in Section 2 and [14]). Using four simplified
distal trajectory clusters reflects our goal that we are mainly interested in how Patagonian “upwind”
terrains influence δ18Op in relatively inland Punta Arenas. Costal terrains on western (the Andes) and
southern (the Cordillera Darwin) boundaries would produce the isotopic rain shadow effect [11,63] on
their leeward side—air masses would have to experience orographic uplift, condensation, and rainout
before reaching Punta Arenas (Figure 1). By contrast, terrains on northern and eastern boundaries are
relatively flat without main topographic barriers; thus, air masses would experience different degrees
of fractionation [28].
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Figure 3. Visualization of GDAS-based precipitation-producing back-trajectories for an example
month (August 2011). There are 13 precipitation events based on the 6 h precipitation data in this
month. The total monthly precipitation amount is 26 mm. Trajectory paths that enter eastern, northern,
western, and southern boundaries of Southern Patagonian landmass are grouped into clusters of
distal easterlies (brown), northerlies (green), westerlies (blue), and southerlies (orange), respectively.
The trajectory line width is proportional to the 6 h precipitation amount associated with each trajectory.
For reference, the thickest and thinnest paths on this graph represent 4.6 mm and 0.2 mm precipitation,
respectively. Yellow triangle marks Punta Arenas. The proportions of precipitation contributed by
different trajectory clusters (easterly-derived—dE, northerly-derived—dN, westerly-derived—dW,
and southerly-derived—dS) in that month can be calculated. This provides an additional metric that
allows us to investigate if the proportion of precipitation derived from a certain trajectory cluster could
influence monthly-composited δ18Op and d-excess in GNIP data.

Because each trajectory is corresponding to a 6 h precipitation event, then the fraction of each
trajectory cluster contributing to monthly total precipitation is calculated as (using the cluster of distal
easterlies as an example):

dE (%) =

∑
pE

P
× 100%, (3)

where dE is the monthly percentage of distal easterly-derived precipitation,
∑

pE is the sum of all
distal easterly-derived 6 h precipitation, and P is the sum of all 6 h precipitation for a particular
month. Following Equation (3), the percentages of distal northerly-derived (dN), westerly-derived
(dW), and southerly-derived (dS) precipitation can be also calculated (Figure 3). As such, we could
quantify the contributions of major synoptic weather types to total monthly precipitation.

To extract the influence of synoptic weather types and moisture transport pathways on δ18Op in
Punta Arenas, we directly looked into whether the δ18Oe

p metric is significantly correlated with dE,
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dN, dW, and dS, using the Pearson correlation coefficient. The statistical analysis was run for four
different austral seasons. Correlation is considered significant if p-value is less than 0.1. If so, it would
indicate that precipitation derived from that trajectory cluster has on average a distinct high or low
δ18Op value relative to others, leading to statistical correlation between its proportion and monthly
δ18Oe

p in our framework. Here a less conservative p-value is chosen because as presented below,
the monthly proportions of precipitation contributed by different trajectory clusters have skewed
distributions towards 100% or 0%. If skewed data were input into bivariate correlation, it often causes
an “attenuation bias” [64] in the Pearson correlation coefficient, weakening its p-value. If significant
correlation was found between dW and δ18Oe

p within a specific season, we calculated the regression
coefficient to determine the sensitivity of δ18Op to the proportion of westerly-derived precipitation.

To investigate the cause for the distinct δ18Op value in a certain trajectory cluster, we calculated
median, lower quartile, and upper quartile values for specific humidity (normalized to the initial air
mass value) and precipitation rate (both are meteorological output variables in HYSPLIT) in each
hour along modeled trajectories to characterize the rainout processes for different trajectory clusters.
The meteorological output variables have been used to characterize air mass rainout history in some
event-based studies (e.g., [16,30]). In reality, each trajectory has its own air mass history, not only in
terms of trajectory path but also along-trajectory meteorological data. Thus, the aim of this analysis
is to characterize the general evolutions of air masses in different trajectory clusters rather than to
quantitively model the degree of rainout and isotopic fractionation in air masses. We also analyzed
the correlation between d-excess data and the proportion of precipitation derived from different
trajectory clusters to diagnose if moisture recycling or post-condensation raindrop re-evaporation
affected precipitation isotopes for different moisture transport pathways.

5. Results and Discussion

5.1. Precipitation Origin from the HYSPLIT Framework

Mean monthly proportions of precipitation derived from the HYSPLIT framework (Table 1) and
precipitation-producing trajectory frequency contour plots (Figure 4) are consistent with empirical
observations that the strong SHWW belt dominates over Punta Arenas all year long. The distal westerlies
on average contributed 82% (GDAS-based) or at least 85% (NCEP/NCAR-based) of precipitation
despite the fact that Punta Arenas is on the leeward side of the Andes under the influence of the
SHWWs. In general, the dW histogram is highly skewed towards the range of 95%–100% (Figure A4),
meaning that for around half of all months the dW are higher than 95% while other trajectory cluster
proportions are less than 5%. The dW have clear seasonal variations that are also consistent with the
observed SHWW seasonal migration (see Section 2). The dW are higher and lower during summer and
winter, respectively, while the shoulder seasons (autumn and spring) have intermediate dW (Table 1).

The derived monthly proportions of precipitation for each trajectory cluster are sensitive to the
meteorological reanalysis dataset used for modeling back-trajectories. Although back-trajectories
were modeled over different periods, using the GDAS reanalysis dataset would generate lower dW
than using the NCEP/NCAR reanalysis dataset, especially during winter by at least 10%, but not for
summer (Table 1). In addition, using GDAS would also generate higher dE than dN, while using
NCEP/NCAR would generate the opposite (Table 1). Considering that the NCEP/NCAR reanalysis
dataset has a lower resolution, some of their modeled back-trajectory paths likely would be deflected
compared to the GDAS-based back-trajectory paths, leading to biased mean estimates on the origin
of precipitation. Therefore, back-trajectory clustering results for periods 1990–2004 and 2005–2017
should be treated separately in the following discussion because these were derived from different
meteorological reanalysis datasets.
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Table 1. Mean monthly proportions of precipitation in Punta Arenas derived from different trajectory
clusters in the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) framework for
different seasons. Results from the NCEP/NCAR reanalysis dataset are shown for different initial
back-trajectory heights (IBTH).

GDAS (2005–2017) NCEP/NCAR (1990–2004)

Season dE
(%)

dN
(%)

dW
(%)

dS
(%) Season IBTH

(m)
dE
(%)

dN
(%)

dW
(%)

dS
(%)

DJF 5.8 0.4 93.0 0.8 DJF

500 3 5.1 89.9 2
1000 1.8 4.1 92.2 1.9
1500 0.9 4.3 94.1 0.6
2000 0.8 4.3 94.3 0.6

MAM 12.6 6.1 80.1 1.1 MAM

500 6.1 6.2 84.5 3.3
1000 4.7 4.9 87.5 2.9
1500 1.6 5.3 90.4 2.7
2000 1.1 5.2 91.6 2.1

JJA 22.3 6.7 67.7 3.3 JJA

500 7.1 11.3 77.6 4
1000 3.8 8.6 83.3 4.3
1500 1.1 7.5 87.4 4
2000 0.7 6.2 90.6 2.5

SON 10.0 2.7 85.7 1.6 SON

500 3.3 6.7 87.8 2.2
1000 2.2 7 89.2 1.6
1500 1.3 5.8 91.3 1.6
2000 1.3 4.5 93.4 0.8
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Figure 4. Trajectory frequency contours for precipitation-producing back-trajectories generated from
(a) the GDAS reanalysis dataset (2005–2017) and from (b,c) the NCEP/NCAR reanalysis dataset
(1990–2004) with an initial back-trajectory height of 500 m (b) and 2000 m (c), respectively.

Furthermore, the derived monthly proportions of precipitation for each trajectory cluster are also
sensitive to the choice of initial back-trajectory height for the NCEP/NCAR dataset. Although the four
selected initial back-trajectory heights represent the levels at which most of atmospheric moisture is
entrained [65], higher initial back-trajectory heights would generate higher dW (Table 1). These results
demonstrate the role of boundary-layer wind shear on modifying back-trajectory path, although many
studies have suggested that different initial back-trajectory heights would not affect the general path of
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back-trajectory [54,60,65,66]. The influence of initial back-trajectory height is also illustrated in the plots
of precipitation-producing trajectory frequency contours that encompassed the Atlantic Ocean and
Northern Patagonia underscoring distal easterlies and northerlies when back-trajectories were initiated
at 500 m agl (Figure 4b), but not when back-trajectories were initiated at higher levels (Figure 4c).

5.2. The Effect of Synoptic Weather Types on δ18Op

In the correlation coefficient heat map between the monthly proportions of precipitation derived
from different trajectory clusters and monthly δ18Op (Figure 5a), the dW and dE are negatively and
positively correlated with δ18Oe

p for the shoulder seasons from the GDAS reanalysis dataset at 0.1 level.
From the NCEP/NCAR reanalysis dataset, the dW and dN are negatively and positively correlated
with δ18Oe

p in autumn and winter while the significance level depends on the initial back-trajectory
height. No correlation was found if the initial back-trajectory height was 500 m. This suggests this
level might to be too low to represent the precipitating air masses, consistent with the GDAS-based
initial relative humidity data (see Section 4).

The above results present evidence that an increasing proportion of distal westerly-derived
precipitation decreases δ18Op in Punta Arenas, although this moisture transport pathway effect is not
manifested for summer during which the SHWW strength reaches maximum at this latitude and causes
the distal westerlies almost the sole moisture transport pathway (Table 1). These findings are consistent
with the Rayleigh distillation model that predicts lower δ18Op on the leeward side of the Andes due to
the “upwind” orographic and rainout effects of westerlies [63]. This Andean isotopic rain shadow
effect may not be as strong as in other parts of Patagonia due to the lower Andean elevation at the
latitude of Punta Arenas (Figure 1), but our analysis mining the monthly δ18Op data still demonstrated
this dynamical link. Along-trajectory meteorological data in GDAS-based distal westerlies indeed
show orographic rainout during air mass transport. The specific humidity starts to slightly decrease
about 5 h prior to reaching Punta Arenas (Figure 6e). The precipitation rate increases and decreases
about 12 h and 2 h before reaching Punta Arenas, respectively, consistent with the orographic effect
as “wet windward and dry leeward” conditions (Figure 6f). The similar process mechanism should
also apply to distal southerlies, whereas in general distal southerlies contribute very little to total
precipitation (Table 1) and the along-trajectory data do not show similar changes in meteorological
data as distal westerlies (Figure 6g,h).

The decrease in the proportion of distal westerly-derived precipitation implies that precipitation
derived from secondary transport pathways become more important, in particular, the distal easterlies
and northerlies (Table 1). However, because the NCEP/NCAR and GDAS reanalysis datasets have
discrepancy in resolving the trajectory paths for distal easterlies and northerlies, caution should be
taken in our interpretations. For the higher-resolution GDAS dataset, an increasing proportion of
distal easterly-derived precipitation would increase the δ18Op. Indeed, distal easterlies have a less
orographic rainout during moisture transport due to the relatively flat and lower-elevation terrain
in the eastern side of Patagonia (Figure 1). The along-trajectory meteorological data show that distal
easterlies have a strong moisture uptake from the Atlantic Ocean with increasing specific humidity
until 4 h before reaching Punta Arenas (Figure 6a), after which the specific humidity decreases and
precipitation rate increases (Figure 6a,b). Precipitation mainly occurs on site rather than en route
for distal easterlies, unlike distal westerlies that show clear “up-and-down” pattern in precipitation
rate. As a result, distal easterly-derived precipitation attains a higher δ18Op signal relative to the
distal westerlies. The distal northerlies, by contrast, show no appreciable change in specific humidity,
and the along-trajectory rainout is very low (Figure 6c,d). In reality, the distal northerlies in our
HYSPLIT framework have a longer transport length on continent (Figure 3), similar to the setting
with a stronger isotopic “continental effect” that should have increased the degree of rainout and
decreased δ18Op [3,4]. However, the flat along-trajectory specific humidity profile might indicate an
efficient moisture recycling, likely from plant transpiration flux from Patagonian grasslands (rather than
evaporation), which could return water vapor efficiently [67–69] without kinetic fractionation and lead
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to relatively higher δ18Op [61]. Nevertheless, distal northerlies also contribute little to total precipitation
(Table 1) and do not play a large enough role in modifying the δ18Op.

Figure 5. The seasonal correlation coefficient heat map for monthly proportions of precipitation derived
from different trajectory clusters (dE, dN, dW, and dS) with (a) monthly δ18Oe

p and with (b) monthly
d-excess. For the NCEP/NCAR reanalysis dataset, the grid is segmented into four parts that from top to
bottom represent the result with an initial back-trajectory height of 500 m, 1000 m, 1500 m, and 2000
m, respectively. Significance levels are noted by the following: * p < 0.1, ** p < 0.05, *** p < 0.01. The
numbers of data for correlation analysis are listed in Table S2.

However, from the NCEP/NCAR reanalysis dataset, the dN are positively correlated with δ18Oe
p.

It seems inconsistent with the GDAS-based results described above and requires some explanations.
As mentioned in Section 5.1, the trajectory paths modeled from the NCEP/NCAR dataset might
be deflected, particularly for distal northerlies that seemed overrepresented at the cost of distal
easterlies. Instead, we examined the spatial relationships between dN and the independent European
Center for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis fields to focus on the
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general synoptic-scale atmospheric circulation patterns that have caused high dN. We found that
the NCEP/NCAR-based dN are correlated with cyclonic anomalies (negative SLP anomalies) over
Northwestern Patagonia and its adjacent Pacific Ocean, and anticyclonic anomalies (positive SLP
anomalies) centered over the Eastern Antarctic Peninsula (Figure 7a). Such the blocking-like flow
dynamically favor the occurrence of quasi-stationary synoptic easterlies [39,40,71], resulting in
an overall reduced average zonal wind speed of prevailing westerlies (Figure 7b). In addition,
the NCEP/NCAR-based dE also show similar patterns in spatial correlations with SLP and zonal wind
speed fields (Figure 7c,d). Therefore, although the trajectory paths for distal easterlies and northerlies
modeled from the NCEP/NCAR reanalysis dataset are uncertain compared to the GDAS, their
synoptic-scale features are robust. We propose that a majority of distal northerlies modeled from the
NCEP/NCAR reanalysis dataset were essentially distal easterlies if modeled from the higher-resolution
GDAS reanalysis dataset, which was however not available before 2005. This could explain why the
dN were overestimated over the dE from the NCEP/NCAR dataset. As such, the significantly positive
correlation between dN and δ18Oe

p is still consistent with our previous finding from the GDAS-based
results above.
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Figure 6. Rainout characteristics in GDAS-modeled trajectories. Median (solid lines) and lower/upper
quartile (dotted lines) values of specific humidity (normalized to initial back-trajectory value)
(a,c,e,g) and precipitation rate (b,d,f,h) in each hour along trajectories in the clusters of distal easterlies
(a,b), northerlies (c,d), westerlies (e,f), and southerlies (g,h).
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Figure 7. Spatial correlation between NCEP/NCAR-based monthly proportion of precipitation related to northerly (a,b) and easterly (c,d) trajectory clusters and ERA5
(a,c) sea level pressure (SLP) and (b,d) 850 mb zonal wind speed fields. The results from an initial back-trajectory height of 1500 m were used because this level is close
to 850 mb and likely represents the average level of main precipitating air masses (see Section 4). The dN and dE data from all months during the corresponding
periods are used, including those months during which δ18Op data were missing or filtered out (see Section 3.1). Areas with p-value higher than 0.1 were masked out.
The plots were generated on [70].
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5.3. The Effect of Synoptic Weather Types on Deuterium Excess

There are multiple factors that could control the d-excess in precipitation, while major studies
suggest evaporative source conditions, including sea surface temperature and boundary layer
relative humidity, are the drivers of precipitation d-excess on global scale and have controlled
the d-excess variations preserved in polar ice cores over millennial and orbital timescales [72,73].
However, at a specific location or region on continents, the short-term (monthly and seasonal)
variations in precipitation d-excess are additionally modified by a multitude of processes unrelated
to oceanic conditions, including moisture recycling (evaporation and transpiration) [20,69,74] and
post-condensation raindrop re-evaporation [16,20,75].

From the similar correlation coefficient heat map analysis, we found that the dW and dE are
negatively and positively correlated with d-excess, respectively (Figure 5b). We speculate that the
degree of raindrop post-condensation re-evaporation is the main mechanism controlling monthly
d-excess variability in Punta Arenas. From the 6 h weather station data, distal westerlies have much
higher frequency of precipitation amount less than 1.2 mm (for the GDAS) and 1.5 mm (for the
NCEP/NCAR) in 6 h (Figure 8a,c). As a result, distal westerly-derived precipitation consists of ~25% of
this “drizzle” precipitation, which is more than double that of distal easterlies (Figure 8b,d). By contrast,
distal easterlies have at least 50% of precipitation that has a precipitation rate of more than 5 mm within
6 h. Therefore, distal westerlies have such as higher proportion of drizzle precipitation component in
which raindrop re-evaporation is significant in decreasing d-excess [28] but not for distal easterlies.
Precipitation event samples collected at Río Gallegos and Laguna Potrok Aike in Eastern Patagonia
(see Figure 1 for locations) [28] and other semi-arid regions such as Southeast Australia [16] also
showed that drizzle precipitation is subjective to a higher degree of raindrop re-evaporation and
support our speculation.
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Figure 8. Kernel density estimation plots for 6 h cumulative precipitation data (a,c) and
amount-weighted cumulative 6 h precipitation histogram (with a bin size of 0.3 mm) (b,d) related
to different trajectory clusters. Results are separated for the GDAS (a,b) and the NCEP/NCAR (c,d)
reanalysis datasets. The color coding follows Figure 6. The transparency of lines in (c,d) is coded
to represent results derived from different initial back-trajectory heights. The results derived from
an initial back-trajectory height of 2000 m agl have zero transparency. The transparency increases
(showing lighter color) with a decreasing initial back-trajectory height from 1500 m to 500 m agl.
Distal westerlies have much higher frequency of precipitation amount less than 1.2 mm (for the GDAS)
and 1.5 mm (for the NCEP/NCAR) in 6 h than distal easterlies marked by vertical dotted lines.
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5.4. Implications for SHWW Reconstruction

The response of δ18Oe
p to dW in Punta Arenas demonstrated in our analysis indicates that δ18Op

variations preserved in terrestrial climate archives on the leeward side of the Andes have the potential
to reconstruct the long-term SHWW dynamics. When the SHWWs were strengthened at this latitude,
regional precipitation was more governed by the prevailing westerlies and their associated storm
tracks [36,76]. When the SHWWs were weakened with an overall reduced SLP gradient over the
Drake Passage similar to the regional negative phase of the SAM, other synoptic weather types such as
easterly flows that are a result of quasi-stationary blocking of the prevailing westerlies [40,71] might
become more frequent in regional climate. A progressively positive shift in the SAM and an overall
strengthening and poleward shift in the SHWWs during recent decades have been observed and was
driven by ozone depletion and CO2 concentration rise [51,77]. The current dominance of the SHWWs
is, however, not always the case in the past. For instance, temperature proxy data have shown that
the SAM was in an extreme negative phase during the fifteenth century, meaning that the SHWW
strength was much reduced during that time [77]. Therefore, the increasing frequency of synoptic
weather types in which moisture is transported by non-westerlies during the waning of SHWWs is
important for understanding the connection between δ18Op and SHWW behaviors in the past (Figure 9).
Furthermore, the frequency and strength of blocking-like episodes in Patagonia have been linked with
the El Niño-Southern Oscillation (ENSO) and would increase during the El Niño phase through the
Rossby wave train [39,71]. We propose that δ18Op variations reflect the synoptic-scale processes related
to the interactions between ENSO and SHWWs/SAM more than the simplistic strength of the SHWWs
(Figure 9). Long-term temperature changes could also affect δ18Op in this region, in particular over
orbital timescales (e.g., before the Holocene), but their roles are less prominent on multi-decadal and
centennial timescales over which temperature variations are not likely to cause large shifts in δ18Op

that if observed would instead imply a dynamical driver in the circulation pattern [39]. In addition,
temperature effect might be also small during the Holocene. Synthesis data and models show that
temperature variations were less than 0.8 ◦C over the past 8000 years [78].

Sensitivity analysis indicates that a 20% less westerly-derived precipitation could cause a 0.6–1.3%�

higher δ18Op in Punta Arenas (Table 2). A previous study close to the Atlantic coast (Río Gallegos and
Laguna Potrok Aike; see Figure 1) showed that precipitation event samples associated with westerlies
have δ18Op signals ~7%� higher than easterlies and northerlies [28], which from a simple isotopic
and mass balance calculation could be converted to an effect of 1.4%� in δ18Op for their sites was
there 20% less westerly-derived precipitation. The different sensitivities may reflect the fact that
Punta Arenas is in a central locus of Patagonian landmass, ~170 km away from the Atlantic coast,
thus easterlies experience a higher degree of rainout during moisture transport compared to the sites
in the Atlantic coast. In addition, the Andean divide at the latitude of Punta Arenas is not as high
as other parts of Patagonia. This may further reduce the “upwind” orographic and rainout-related
fractionation that has occurred in air masses delivered by westerlies. Therefore, terrestrial climate
archives such as lakes and peat bogs closer to the Atlantic Ocean would be more sensitive in detecting
the long-term variability in the frequency of synoptic easterlies and the SHWW dynamics from
the δ18Op paleo-records. For example, peat moss cellulose data from Ariel Peatland (see Figure 1),
which was close to the Atlantic coast (~80 km), showed that the δ18Op was ~2%� higher than during
the early twentieth century than the current period [39]. Taking the sensitivity into consideration,
this shift might indicate that westerly-derived precipitation was ~30% less during the early twentieth
century compared to today as a recent analogue for the period of weakened SHWWs.
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Table 2. Effect of a 20% less westerly-derived precipitation on δ18Op based on regression coefficients
between δ18Oe

p and dW if within a specific season they are statistically significant from Figure 5a.
Results are compared with another study [28] in which the authors based on event-based precipitation
samples concluded that precipitation derived from westerlies are on average 7%� lower than easterlies
and northerlies at Río Gallegos and Laguna Potrok Aike (Figure 1). From a simple isotopic and mass
balance calculation, it could be converted that a 20% less westerly-derived precipitation would have an
effect of +1.4%� in δ18Op for their sites.

Meteorological Reanalysis Dataset Season δ18Op Change (%�)

GDAS MAM +0.6
GDAS SON +1.0

NCEP/NCAR (1500 m) JJA +1.0
NCEP/NCAR (2000 m) JJA +1.3

The SHWW dynamics also regulate hydrological regimes in Southern Patagonia. Although today,
the SHWWs are delivering a large amount of precipitation even to the leeward side of Southern
Patagonia, they are not as efficient as other wind directions (Figures 8 and A1). Some historic extreme
precipitation events along the Atlantic coast of Patagonia have been linked with enhanced moisture
flux derived from easterlies [40]. Our HYSPLIT back-trajectory modeling also showed that the extreme
precipitation event on 11–12 March 2012, which caused historic flooding of river Río Las Minas in the
main city of Punta Arenas [79], occurred under bursts of easterlies (Figure 10a). This event was caused
by a transient migratory weather system with an anomalous anticyclonic center over the Antarctic
Peninsula resulting in a blocking-like flow (Figure 10b). For this month, the dE is as high as 76%.
The monthly precipitation amount is 63 mm (102 mm from conventional weather station Jorge C.
Schythe in the main city of Punta Arenas [79]), which is around twice as high as the monthly average
(Figure 2d). The GNIP δ18Op value for this month is −4.75%�, which corresponds to a +3.4%� of δ18Oe

p.
The d-excess for this month is 1.6%�, suggesting that the high δ18Op value is not an artifact from sample
evaporation. This month is a good example showing that changes in synoptic-scale patterns in the
past were able to influence both δ18Op and hydroclimate. If the proportion of precipitation derived
from easterlies increased, it might also indicate an increase in moisture availability for grasslands and
desserts in Eastern Patagonia [46]. Therefore, from terrestrial climate archives, the δ18Op paleo-records
can be tied to other hydrological proxies to understand the coupled evolution of the synoptic-scale
patterns and hydrological regimes in Southern Patagonia over long timescales (Figure 9).
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the direct and indirect connections, respectively. The tropical Pacific Ocean (ENSO) could generate
Rossby wave train propagating the tropospheric mass divergence anomalies to mid- and high-latitude
of the Southern Hemisphere. Under the El Niño phase, the frequency of blocking-like flow in
Southern Patagonia would increase ( 1O) [39,71]. This Rossby wave train is responsible for the apparent
ENSO–SAM phase teleconnection ( 2O) [77,80], as the circulation anomalies of blocking-like flow is
similar to the negative phase of the SAM (reduced mean SLP gradient across the Drake Passage)
( 3O). The increased occurrence of quasi-stationary blocking-like flow would increase the occurrence
of synoptic easterlies in Southern Patagonia ( 4O). As a result, the overall strength of the prevailing
westerlies would be reduced ( 5O), although the strength of the hemisphere-wide SHWWs is directly
related to the SLP gradient between mid- and high-latitude characterized by the phase of the SAM
( 6O). As the synoptic easterlies became more frequent, their representation in regional precipitation in
Eastern Patagonia would he higher, increasing the mean δ18Op over long timescales ( 7O). In addition,
the synoptic easterlies are more often associated with larger precipitation events that would increase
the overall precipitation amount and weaken the Andean rain shadow in Eastern Patagonia ( 8O) [46].

5.5. Implications for Paleoaltimetry Reconstruction

Our results also have implications for isotope-based paleoaltimetry reconstruction in Southern
Patagonia and, by extension, Northern Patagonia and other regions with similar settings such as the
South Island in New Zealand (leeward side with a single dominant moisture transport pathway) [11,81].
Traditionally, these studies have assumed that a single dominant moisture transport pathway such
as the strong SHWWs in Patagonia has also persisted throughout geological timescales. Under this
assumption, any negative temporal shift in δ18Op in the modern leeward side could be interpreted
as the development of isotopic rain shadow and used to estimate the surface elevation in upwind
locations using an empirical isotopic lapse rate [12,37].

This study, however, shows that an additional complexity is involved in properly interpreting the
signal of surface uplift from leeward isotope data. Specifically, the shifts in δ18Op can be alternatively
caused by changes in moisture transport pathways under different atmospheric circulation patterns
even in a region where today there seems to only have a single dominant moisture transport pathway.
As such, shifts in Antarctic sea ice extent, Southern Hemisphere meridional sea surface temperature
gradient, and tropical ocean-atmosphere system can also impose changes in SHWW strength and
position [82–84] and, consequently, the synoptic-scale patterns and δ18Op signals preserved in terrestrial
climate archives in the leeward side of Patagonia. Therefore, any leeward isotope-based paleoaltimetry
studies should consider how atmospheric circulation was operated in the past under different
paleogeography and climate boundary conditions. Because our sensitivity analysis (Table 2) indicated
that δ18Op at sites farther away from the Atlantic coast is less sensitive to the SHWW variability,
we would expect that sites from the nearest leeward locations are most suitable for detecting the major
uplift signal of the Patagonian Andes from the δ18Op proxy data. Although the effect of changing
moisture transport pathway on δ18Op might be not as large as the effect of mountain uplift, it could
result in a biased estimate on uplift history if proxy data are collected from sites close to the Atlantic
coast where a larger fraction of moisture could be advected from easterlies that break the rule of
leeward paleoaltimetry.
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(a)

(b)

Figure 10. The synoptic condition for the historic extreme precipitation event occurred on 11–12 March
2012. (a) Modeled back-trajectories (n = 8) with their UTC time starting from 12:00 on 11 March 2012
to 06:00 on 13 March 2012. The trajectory line width is proportional to the 6 h precipitation amount
associated with each trajectory. For reference, the thickest and thinnest paths on this graph represent
11.4 mm and 0.8 mm precipitation, respectively. Yellow triangle marks Punta Arenas. (b) Three-day
SLP anomaly for this event relative to the 1981–2010 mean climatology in NCEP/NCAR reanalysis.
The plot was generated on [85].
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6. Conclusions

Other than air temperature and precipitation amount, it has been well recognized that moisture
source and transport pathway could also influence δ18Op for individual precipitation event on a
regional scale. However, only a few paleoclimate studies are able to link δ18Op variations over time
with synoptic-scale shifts in atmospheric circulation patterns. We here provide a new framework for
extracting the relationship between the synoptic conditions and δ18Op hidden in decades-long GNIP
monthly δ18Op record at a specific station. In such framework, weather station precipitation data and
back-trajectory modeling are combined to quantify the proportions of precipitation delivered from
different trajectory clusters that are characterized by different synoptic weather types on monthly
basis. We apply this framework to GNIP monthly δ18Op record in Punta Arenas located in Southern
Patagonia that today is under year-round influence of the strong SHWWs. We show that distal
westerlies indeed contribute to a majority of precipitation in Punta Arena even though it is located in
the Andean rain shadow, but not all of the precipitation. Instead, there is a considerable amount of
precipitation originated from the distal easterlies, particularly during non-summer seasons. We further
show that a decreasing proportion of distal westerly-derived precipitation would increase δ18Op,
caused by a concurrently increasing proportion of distal easterly-derived precipitation that has a
relatively higher δ18Op signal. We then link the proportions of precipitation origin with synoptic-scale
atmospheric circulation patterns to provide an observational basis and a process-based mechanism
for reconstructing the long-term SHWW dynamics from δ18Op paleo-records preserved in terrestrial
climate archives. Our analysis highlights the importance of site location in preserving the most
sensitive SHWW record inferred from δ18Op data, as sensitivity analysis indicates that the Atlantic
coast might have the largest contrast in δ18Op between the westerly and easterly flows. Our results
have implications for isotope-based leeward paleoaltimetry not only in Patagonia but also for other
similar regions. Leeward paleoaltimetry studies often assume a single moisture transport pathway or
source region has persisted throughout geological timescales, while our study suggests that different
atmospheric circulation patterns in the past were also able to cause shifts in δ18Op, which sometimes
were, however, interpreted as the sign of surface uplift or evaporative enrichment in soil water.

Finally, the framework introduced in this study provides new opportunities in linking large
dataset of GNIP monthly precipitation isotopes with synoptic-scale patterns of moisture transport.
Such framework utilizes station-based hourly or daily precipitation data to quantify the contributions
of different synoptic weather types on each monthly-composited δ18Op as well as d-excess datum.
These monthly-composited δ18Op and d-excess data readily available from multiple sites and over a
long monitoring period, if put in a reasonable context of moisture transport, could provide insights
into hydrological processes on terrestrial landscape, with implications for partitioning terrestrial water
fluxes and reconstructing atmospheric circulation patterns using isotope data.
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Figure A1. Wind sensor (every 1 h) and rain gauge (every 6 h) data from weather station in Punta 
Arenas airport during the period 1990–2017 plotted on the 16-point compass rose. (a) Frequency 
percentage of hourly wind direction observations (n = 232,277). There are 13,177 observational gaps 
(5.4% of all hours). (b) Precipitation percentage from each wind direction. Six-hour cumulative 
precipitation amount (n = 40,769) was divided by 6 to match with each hourly wind direction data 
prior to each precipitation measurement, assuming that wind in each of that 6 h contributes to that 6 
h cumulative precipitation equally. There are 140 observational gaps (0.3% of all hours). (c) The 
quotient between precipitation percentage and time percentage for each respective wind direction. 
The weather station data are available for public download on [55].

Figure A1. Wind sensor (every 1 h) and rain gauge (every 6 h) data from weather station in Punta
Arenas airport during the period 1990–2017 plotted on the 16-point compass rose. (a) Frequency
percentage of hourly wind direction observations (n = 232,277). There are 13,177 observational gaps
(5.4% of all hours). (b) Precipitation percentage from each wind direction. Six-hour cumulative
precipitation amount (n = 40,769) was divided by 6 to match with each hourly wind direction data
prior to each precipitation measurement, assuming that wind in each of that 6 h contributes to that 6 h
cumulative precipitation equally. There are 140 observational gaps (0.3% of all hours). (c) The quotient
between precipitation percentage and time percentage for each respective wind direction. The weather
station data are available for public download on [55].
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Figure A2. Comparisons between different weather station databases of Punta Arenas airport.
Solid lines in all plots indicate a 1:1 relationship. (a) Scatter plot between GHCN Version 2 reported
monthly precipitation amount and monthly cumulative precipitation amount (calculated from the sum
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of all 6 h precipitation data for each month). The open dots indicate 6 individual months
(March–June 2011, December 2011, and May 2012) during which 6 h precipitation data have temporal
gaps (27%, 16%, 22%, 14%, 11%, and 6% of all 6 h intervals, respectively), which are responsible for their
monthly cumulative precipitations amount underestimated compared to GHCN monthly precipitation
amount data. It is still likely that a few GHCN monthly precipitation amount data are erroneous
as well, which might explain the deviations from the monthly cumulative precipitation amount.
(b) Scatter plot between reported GNIP monthly precipitation amount and Punta Arenas monthly
cumulative precipitation amount similar as (a). (c) Scatter plot between GHCN Version 2 monthly
precipitation amount and GNIP monthly precipitation amount. Clearly there are also several important
erroneous data recordings in GNIP database. (d) Scatter plot between GHCN Version 3 monthly air
temperature and GNIP monthly air temperature. Most data are plotted along the 1:1 line, but there are
still several important erroneous GNIP data recordings. These data are mainly found from January
2015 to March 2016 (shown as open dots). These GNIP monthly air temperature values are much higher
than normal, while weather station data from nearby city do not show any corresponding high air
temperature, confirming that these GNIP data are erroneous.

Figure A3. Map showing the delineations of eastern (brown), northern (green), western (blue),
and southern (orange) moisture transport boundaries of Southern Patagonia landmass used in this
study. If a back-trajectory came across one of the above boundaries, that trajectory was clustered
into distal easterlies, northerlies, westerlies, and southerly trajectories, respectively. Here the western
boundary of Southern Patagonia landmass is set on the east of the Andes so that any back-trajectory
crossing over the Andes will be classified as the distal westerlies.
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Figure A4. Histogram of monthly dE (brown), dN (green), dW (blue), and dS (orange) derived from
(a) the GDAS and (b) the NCEP/NCAR reanalysis datasets with a bin size of 5%. The transparency
of histogram plots in (b) is coded to represent results derived from different initial back-trajectory
heights. The results derived from an initial back-trajectory height of 2000 m agl have zero transparency.
The transparency increases (showing lighter color) with a decreasing initial back-trajectory height from
1500 m to 500 m agl.
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