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Abstract Recent amplified climate warming in the Arctic has caused profound changes in terrestrial
ecosystems, with the potential for strong feedback on climate change. Arctic tundra landscapes have developed
patchy and thin organic soil (peat) layers at the surface that may continue to grow into mature peatlands and
become a larger carbon sink under future warming. Here we use paleoecological analyses of multiple soil and
peat cores collected from the North Slope of Alaska to document and understand the formation and development
histories of tundra peat patches and permafrost peatlands. We find a consistent peat development sequence for
peat patches, first from mineral soils to sedge peat during the Little Ice Age, and then to Sphagnum peat during
the recent warming with high carbon accumulation rates. These findings suggest that climate cooling is likely
critical for the initial peat buildup on tundra soils due to reduced decomposition, whereas climate warming
triggers the regime shift into an increased abundance of Sphagnum mosses that are likely central to enhancing
their carbon sink capacity. Additionally, peat patches become similar to permafrost peatlands in the vicinity in
terms of ecosystem processes and carbon dynamics, and therefore may have developed the same
ecohydrological feedback system to maintain their long‐term stability. This study implies that the potential
future expansion of peat patches into peatlands may strongly alter the carbon balance of Arctic tundra,
supporting the new United Nations Environment Programme's report that calls for incorporating widespread
shallow peat into understanding the peatland–carbon–climate nexus.

Plain Language Summary The ongoing trend of global warming has the fastest rate in the Arctic and
has caused rapid and widespread environmental changes in the Arctic tundra. A major concern is the warming‐
induced permafrost thaw that may destabilize the rich soil‐carbon pools underground, providing positive
feedback to further accelerate warming. However, warming may also induce northward expansion of northern
peatlands that function as persistent carbon sinks over millennia, just like how northern peatlands colonized
boreal and sub‐Arctic landscapes during and after deglacial warming 14,000∼8,000 years ago. If true, new
peatland formation may provide negative feedback to mitigate warming. This study focuses on patchy and thin
peat layers found on Alaska's tundra and uses paleoecological analyses to understand their histories on the
landscape. We find that these peat patches were formed during the cold Little Ice Age, but recent climate
warming triggered a shift into dominance of Sphagnum mosses, the major peat‐forming species for northern
peatlands. By comparing with permafrost peatlands nearby, we present multiple lines of evidence to argue that
tundra peat patches may be transformed into new Arctic peatlands with important carbon‐cycle consequences
and recommend future research to further understand such processes with new observational data, laboratory
experiments, and model simulations.

1. Introduction
As one of the world's major biomes, the Arctic tundra contains a large portion of global soil carbon (C) stocks
within the active layer and deeper permafrost (Hugelius et al., 2014; Ping et al., 2008; Schuur et al., 2015). In
recent decades, the Arctic has warmed several times faster than the global average due to a range of mechanisms
such as ice‐albedo‐temperature feedback (Rantanen et al., 2022; Walsh, 2014), resulting in widespread ecological
changes on the tundra landscape including shrub expansion (Myers‐Smith et al., 2011; Tape et al., 2006), earlier
and enhanced vegetation growth known as “Arctic greening” (Jia et al., 2003; Kim et al., 2021; Myers‐Smith
et al., 2020), permafrost thaw (Hugelius et al., 2020; Schuur et al., 2009; Turetsky et al., 2020), and wildfire
events (Hu et al., 2015; Mack et al., 2011; Scholten et al., 2022). These changes may induce other climate
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feedback through their impacts on ecosystem C cycling (Bouskill et al., 2020; Bradford et al., 2016; Luo, 2007).
However, the response of tundra ecosystems to future climate change and the fate of their large soil C stocks are
unclear, in particular for belowground processes and associated C budgets (Bouskill et al., 2020; Sistla
et al., 2013). Using different methods and data sets, previous studies of ecosystem C fluxes have suggested that
Arctic tundra ecosystems likely function as CO2 sources, sinks, or are almost CO2‐neutral at present (Commane
et al., 2017; Euskirchen et al., 2017; McGuire et al., 2012; Ramage et al., 2024; Virkkala et al., 2021). Earth
system models also have limited skills in representing modern C stocks and fluxes of Arctic tundra (Commane
et al., 2017; Todd‐Brown et al., 2013) and are highly uncertain in predicting their future changes in C cycling
(Natali et al., 2019; Qian et al., 2010; Tao et al., 2021).

Arctic tundra has peaty soils or a distinct surface organic‐rich layer that can be 5–20 cm thick (Goryachkin
et al., 1999; Juselius et al., 2022; Walker et al., 1989, 2005). This layer often contains >30% organic matter (OM),
roughly equivalent to>15% organic C (Bockheim et al., 1999; Klaminder et al., 2009), a common requirement for
being defined as peat, but traditionally cannot be defined as peatlands because the peat layer is patchy (meters in
extent) and too thin (<30 cm) (Joosten & Clarke, 2002; Rydin & Jeglum, 2013). The newly published Global
Peatlands Assessment by the United Nations Environment Programme (UNEP) suggests that a shallower
threshold of 10 cm for defining peatlands “might be more appropriate in order to account for peatlands' contri-
bution to climate” and from conservation consideration (UNEP, 2022). Doing so will dramatically increase the
global peatland area, in particular in the Arctic. For example, the peatland area will almost triple in Russia
(UNEP, 2022). Although the UNEP report has recognized the importance of widespread shallow peat, little is
known about the fate of peat patches—whether they will continue to grow into mature peatlands and function as
persistent C sinks in the future. Tundra peat patches are not comparable to today's northern peatlands in the size of
C stocks, but these two peat‐forming ecosystems share apparent similarities—both require a persistent C
imbalance with plant production greater than ecosystem respiration and both may have a ground cover of
Sphagnum mosses (peat mosses) (Harden et al., 1992; Walker et al., 1989, 2005), an ecosystem engineer that
favors peat accumulation through modifying their ambient environments (Clymo & Hayward, 1982; Rydin &
Jeglum, 2013; van Breemen, 1995). The difference is that tundra peat patches are moist (due to cold climate and
permafrost) but not waterlogged as for northern peatlands. However, and importantly, peat patches develop
widely on tundra landscapes and do not appear to rely on particular terrain features such as polygons or local
depressions, whereas intact waterlogged peatlands in Arctic tundra are associated with such often due to the
influence of permafrost that alters local drainage patterns (Sim et al., 2019; Tarnocai & Stolbovoy, 2006; Treat
et al., 2016; Zoltai & Tarnocai, 1975).

Northern peatlands, mostly found in warmer boreal and sub‐Arctic regions further south, are remarkable
terrestrial C sinks where organic C has accumulated under waterlogged conditions over millennia or even longer
(Yu, 2012; Yu et al., 2009) (Figure 1b). The spatiotemporal changes of northern peatlands, including their in-
ceptions, accumulations, and expansions, play a major role in the global C cycle and have affected atmospheric
greenhouse‐gas concentrations through time (MacDonald et al., 2006; Stocker et al., 2017; Yu et al., 2010, 2011).
Although peatland development and carbon accumulation are controlled by a diversity of internal and external
drivers as revealed in many site‐specific studies (Klein et al., 2013; Payne et al., 2016; Piilo et al., 2020), global
data syntheses indicated that longer and warmer growing seasons are crucial to promote peatland inception and
growth, while the factor of increased effective moisture is secondary and regionally important (Charman
et al., 2013; MacDonald et al., 2006; Morris et al., 2018; Treat et al., 2019; Yu et al., 2009, 2010). As the Arctic
becomes warmer (and wetter) and the trend continues (McCrystall et al., 2021; Rantanen et al., 2022), the tundra
landscape will, in the future, expand its climate space to become more like current boreal and sub‐Arctic regions
that have supported the development of extensive peatlands during the Holocene (Yu et al., 2009) (Figure 1a).
Based on the climate space theory, it is possible that amplified climate warming may turn, or is turning, Arctic
tundra into an even more peatland‐rich landscape, with widespread peat patches that may serve as the initial stage
of new peatland formation. Although some studies highlight that climate warming may result in the loss of
suitable climate space and the shrink of C sinks for peatlands in relatively lower latitudes (Fewster et al., 2022;
Gallego‐Sala et al., 2018), recent coupled model simulations with peatland nodules do support the potential future
trajectory of poleward peatland migration (Chaudhary et al., 2020; Müller & Joos, 2021; Qiu et al., 2020).
However, we do not fully understand how this migration may occur, and more specifically, the connections in
ecosystem functions and processes between shallow peat patches and mature peatlands due to the paucity of
records that can reveal their genesis and evolution histories.
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In this study, we fill this fundamental knowledge gap by using multi‐core and multi‐proxy paleo‐records from the
North Slope of Alaska (NSA) to document the formation and development histories of tundra peat patches and
permafrost peatlands along with a reconstruction of environmental and ecological changes in this region. This
study is, to our knowledge, one of a few that can examine the peat accumulation dynamics from shallow non‐
peatland archives, a topic of current concern for the UNEP and related policy makers (Juselius et al., 2022;
UNEP, 2022; Wilkinson et al., 2020). Our objectives are to investigate (a) when peat patches emerged on tundra
mineral soils and how they changed over time; (b) what factors control the growth and C sink capacity of peat
patches; and (c) what roles these peat patches may play in the future C balance of the Arctic. For each objective,
we specifically hypothesize that (a) peat patches initiated and accumulated most carbon during past warm periods;
(b) climate is the main factor controlling the growth and C sink capacity of peat patches; and (c) peat patches show
high similarities with peatlands in ecosystem functions and processes and will become important C sinks in Arctic
tundra.

2. Materials and Methods
2.1. Study Sites and Samples

This study investigates two sites in the northern foothills of the Brooks Range on NSA (Figures 2a and 2b): the
Upper Imnavait Creek (UIC) tussock tundra site (68.60°N, 149.30°W) and the permafrost‐affected Kuparuk
River Peatland (KRP) site (68.96°N, 149.67°W). UIC is located next to Imnavait Creek, a tributary of Kuparuk
River, and is approximately 12 km east of Toolik Lake (adjacent to the Toolik Field Station). KRP is approxi-
mately 40 km north of Toolik Lake.

In the Toolik Lake area, the mean annual temperature is − 8.5°C, and the mean summer (June–August) tem-
perature is 9°C (Daniels et al., 2017). Only summer months are above freezing. The mean annual precipitation
exceeds 300 mm, with ∼60% falling as rain during the summer months (Daniels et al., 2017). The area is covered

Figure 1. The climate space and latitudinal distribution of Arctic tundra and northern peatlands. (a) The probability climate
space (65% and 90% probability in thick and thin lines, respectively) of mean annual temperature (MAT) and precipitation
(MAP) for modern peatlands north of 45°N (red lines) and for modern and future Arctic tundra (green and blue lines,
respectively). The peatland climate space is based on all 0.25° × 0.25° grids (individually plotted as red open circles) that
contain peat cores in the observational database by Hugelius et al. (2020). The Arctic tundra climate space is based on all
0.25° × 0.25° grids north of 45°N classified as tundra in low‐vegetation cover (with low vegetation cover >80%) from the
ERA5 reanalysis (Hersbach et al., 2020). Modern climate data are from the ERA5 reanalysis (during the period 1981–2010
CE) (Hersbach et al., 2020). Future climate data for the modern Arctic tundra region are CMIP5 multi‐model ensemble
means during the period 2080–2099 CE under RCP8.5 scenario (Taylor et al., 2012). Also shown are modern climate
conditions at locations of tundra peat patches (green triangles) discovered by the authors (see Figure 2a for geographical
locations). (b) A north polar view of the spatial distribution of Arctic tundra (green grids) and peatland (red grids, overlaid on
tundra where overlapped) that are used to derive their climate spaces.
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Figure 2. Maps and photos showing the locations and settings of study sites on the North Slope of Alaska (NSA). (a) Locations of the Upper Imnavait Creek (UIC) and
the Kuparuk River Peatland (KRP) (yellow triangles) along with other tundra peat patch sites (cyan dots) discovered during a fieldwork campaign in summer 2019.
(b) Areas of UIC and KRP relative to Toolik Lake. (c) Locations of KRP cores. (d) Locations of UIC cores and their positions along a hillslope transect. (e) Field view of
UIC and discovered Sphagnum‐dominated peat patches (dominated by Sphagnum rubellum). (f) Sphagnum‐dominated peat patches at another typical site on the NSA.
(g) Soil/peat core photographs.
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by snow for the rest of the year. The Kuparuk watershed region is mantled by mid‐Pleistocene‐age Sagavanirktok
glacial deposits, with a gently sloping surface containing abundant colluvial and organic deposits (Hamil-
ton, 1986). NSA is in the continuous permafrost zone. In the Toolik Lake area, the permafrost is∼200 m thick and
only partially thaws during the summer (Huryn & Hobbie, 2012). The active layer is on average ∼36 cm deep and
often moist (Walker &Walker, 1996). There, tussock sedge tundra is the most common vegetation class (Walker
et al., 1989, 2005). Specifically, the plant community at acidic uplands of UIC is dominated by tussock sedges
(“cotton grass,” Eriophorum vaginatum) and reddish Sphagnum rubellum (Figure 2e). Other important species
include dwarf shrubs (Betula nana, Salix planifolia), non‐tussock sedges (Carex bigelowii), orangish Sphagnum
lenense (upper hillslope), and greenish Sphagnum girgensohnii (lower hillslope and floodplain). Notably, S.
rubellum and S. lenense are acidic, nutrient‐poor species, while S. girgensohnii is a poor fen (weakly minero-
trophic) species (Kuptsova & Chakov, 2022; Rydin & Jeglum, 2013).

During the fieldwork campaign in summer 2013, six soil cores were collected at UIC from Sphagnum‐dominated
peat patches along a hillslope (∼50 m elevation gradient) transect, and five peat cores were collected at KRP
(Figures 2c and 2d; Table 1). These cores were all collected at locations free of obvious hydrological and
topographic variations to minimize potential local influences on peat accumulation. UIC is the primary study site
on peat patches, while KRP is used as a supporting peatland site for comparison. These cores were retrieved with a
combination of a large serrated knife, hand‐operated peat corer, and gasoline‐powered permafrost corer. Back in
the laboratory, cores were cut into 1‐cm slices and subsampled for a suite of paleoecological analyses, including
radiocarbon (14C) dating, loss‐on‐ignition (LOI), plant macrofossils, pollen assemblages, bulk peat C and ni-
trogen (N) abundances and isotopic compositions, Sphagnum stem cellulose C and oxygen (O) isotopic com-
positions (see a summary of analyses in Table 2). These analyses were mainly conducted for four master cores:
UIC13‐1, UIC13‐2, UIC13‐3, and KRP13‐2 (Figure 2g).

2.2. Laboratory Analysis

Physical properties (OM content and OM bulk density) of cores were analyzed at 1‐cm intervals following a
standard procedure. Subsamples (1 cm3) were weighed, dried in the oven at 80°C overnight, weighed again,
combusted at 550°C for 2 hrs, and weighed again to determine the mass loss as an estimate of the OM content.

Plant macrofossils were analyzed at 1‐cm intervals for cores UIC13‐1, UIC13‐2, UIC13‐3, and KRP13‐2.
Subsamples (1 cm3) were gently washed with deionized water and sieved through a 125‐μm mesh to concentrate
macrofossils, which were then identified under a stereo microscope. The relative abundance of each macrofossil
type or unidentified organic matter was estimated as the percentage by volume. A stratigraphically constrained
cluster analysis (CONISS) was used to determine the zonation of macrofossil assemblages using the Tilia pro-
gram (Grimm, 1987).

Table 1
Main Information About Collected Cores

Core ID Latitude Longitude Elevation (m asl) Core length (cm) Dominating Sphagnum species

UIC13‐1 68°36′02.4″N 149°18′18.0″W 908 44.3 S. girgensohni

UIC13‐2 68°36′02.6″N 149°18′18.3″W 908 25 S. girgensohni

UIC13‐3 68°36′01.7″N 149°18′15.1″W 916 24 S. rubellum

UIC13‐4 68°36′00.7″N 149°18′01.9″W 927 26 S. rubellum

UIC13‐5 68°36′00.2″N 149°17′44.2″W 950 26 S. rubellum

UIC13‐6 68°36′03.1″N 149°18′25.1″W 906 29 S. rubellum, S. girgensohni

KRP13‐1 68°57′34.8″N 149°40′34.8″W 417 35 Sphagnum spp.

KRP13‐2 68°57′22.8″N 149°40′23.5″W 403 52 Sphagnum spp.

KRP13‐3 68°57′22.2″N 149°40′14.7″W 427 31 Sphagnum spp.

KRP13‐4 68°57′29.5″N 149°39′58.7″W 422 31 Sphagnum spp.

KRP13‐5 68°57′29.6″N 149°39′58.5″W 423 32 Sphagnum spp.
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Fossil pollens were analyzed at 1‐cm intervals for cores UIC13‐3 and KRP13‐2. Subsamples (1 cm3) were
processed following a modified standard acetolysis procedure, including sieving and treatments of HCl, KOH,
HF, and acetolysis. Pollen grains from the samples were identified and counted to a sum of at least 100 grains
under a compound microscope. A stratigraphically constrained cluster analysis (CONISS) was similarly used to
determine the zonation of pollen assemblages using the Tilia program (Grimm, 1987).

Bulk peat C and N elemental concentrations and their isotopic compositions were measured at 1‐cm intervals for
cores UIC13‐1 and UIC13‐3. Subsamples (1 cm3) were freeze‐dried and then homogenized. Sphagnum moss
cellulose C and O isotopic compositions were measured at 1‐cm intervals (that contain sufficient Sphagnum
macrofossils) for cores UIC13‐2, UIC13‐3, and KRP13‐2. Sphagnum moss stem fragments were hand‐picked
with branches removed from subsamples (2–4 cm3), extracted for cellulose following the established alkaline‐
bleaching method (Loader et al., 1997), homogenized, and freeze‐dried (Xia et al., 2018). Prepared samples of
sufficient amount were enclosed into capsules and analyzed with the well‐established elemental analyzer‐mass
spectrometer coupled systems at the Stable Isotope Facility at the University of California, Davis, USA.
Following the routine, results of isotope ratio measurements were calibrated and reported as δ notations (in per
mil) referenced to Vienna Pee Dee Belemnite for δ13C, air for δ15N, and Vienna Standard Mean Ocean Water for
δ18O. The reported long‐term standard deviation for each analysis is 0.2%, 0.3%, and 0.3%, respectively.

Peat 14C ages were measured at selected levels to determine the timing of peat inception and Sphagnum onset. For
basal peat ages, dating material was composed of macrofossils of non‐aquatic taxa (Quik et al., 2022), or, if the
sample lacked identifiable macrofossils, root‐free bulk peat materials were used. For Sphagnum onset ages, dating
material was composed of the first‐appeared major Sphagnum peat horizon in each core. Additional dating
samples were taken from cores to establish age‐depth models for the discussion of environmental change and C
accumulation records. These materials were washed with deionized water and dried in the oven. Samples were
pretreated and dated at the Keck AMS Carbon Cycle Lab at the University of California, Irvine, USA. Results
were calibrated based on the IntCal20 and Bomb21NH1 calibration data sets for pre‐ and post‐bomb 14C dates,
respectively (Hua et al., 2022; Reimer et al., 2020). Simple age‐depth models were developed for cores UIC13‐1,
UIC13‐2, and UIC13‐3 using the linear interpolation method and for core KRP13‐2 using the smooth spline
method on the CLAM program (Blaauw, 2010). The advantages of linear interpolation for detecting potential
abrupt changes in accumulation rates have been previously discussed in Yu et al. (2014). Importantly, we used
multiple post‐bomb 14C dates before and after the atmospheric 14C peak of 1965 CE to constrain the chronology
of the most recent peat accumulation. Some 210Pb dates were obtained for core UIC13‐1 but were not considered
here due to possible mobility downcore (see Cleary, 2015). The apparent C accumulation rates (aCAR) were
calculated for some cores using measured C contents if available or assuming the mean value of available data,
with age‐depth models or between dated intervals.

Table 2
Summary of Analyses Conducted and Apparent C Accumulation Rates (aCAR) for Sedge and Sphagnum Peat Intervals (NA = not Available)

Core ID LOI Macrofossil Pollen
Bulk C/N, δ13C,

and δ15N
Sphagnum cellulose
δ13C and δ18O

14C
dating

Age‐depth
model

Sedge peat aCAR
(gC/m2/yr)

Sphagnum peat aCAR
(gC/m2/yr)

UIC13‐1 √ √ √ √ √ 28 75a

UIC13‐2 √ √ √ √ √ 14 72

UIC13‐3 √ √ √ √ √ √ √ 5 40

UIC13‐4 √ √ 9 119

UIC13‐5 √ √ NA 50

UIC13‐6 √ √ 17 66

KRP13‐1 √ √ 17 130

KRP13‐2 √ √ √ √ √ √ 6 22a

KRP13‐3 √ NA NA

KRP13‐4 √ NA NA

KRP13‐5 √ NA NA
aSphagnum onset ages were determined based on the interpolation from the age‐depth model.
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3. Results
Our multi‐proxy data reveal the genesis and evolution of multiple tundra peat patches, the history of a permafrost‐
affected peatland, and the history of Arctic tundra vegetation and climate on NSA.

Loss‐on‐ignition data (Figure 3a and Figure S1 in Supporting Information S1): LOI data provide a major
overview of soil and peat stratigraphy. The OM content is substantially low at the bottom mineral‐soil section of
UIC cores (except UIC13‐5). The higher OM content further up indicates the inception of peat accumulation over
mineral soils. The OM bulk density has a decreasing trend toward the top, representative of the shift from highly
decomposed to poorly decomposed peat. For KRP cores, OM content and density profiles show more than one
mineral‐rich layer, possibly related to permafrost interactions, and generally highly decomposed peat in the lower
section.

Macrofossil data (Figures 3c and 4): Plant macrofossil data reflect the changes in the dominant vegetation that
composes the peat. For three master UIC cores, macrofossil data show a consistent sequence of organic soil
development frommineral soils to sedge peat and then to Sphagnum peat. For the master KRP core, there is also a
clear transition from sedge peat to Sphagnum peat in the upper section, but Sphagnummacrofossils are not absent
in the lower section.

Pollen data (Figures 3d and 5): Our two pollen records are among very few studies (Gałka et al., 2018) that can
provide a continuous, long‐term perspective on the recent warming‐driven shrub expansion on the Alaskan
tundra, previously only documented by short‐term vegetation plots, remote sensing products, and repeat pho-
tographs (Tape et al., 2006). Both UIC and KRP sites show a sequence of increasing shrub pollen proportion from
<20% at the bottom to >80% at the top of the core. The decrease in Cyperaceae (sedge family) pollen percentage
mainly occurs with the increases in Betula and Ericaceae (heath family) pollen percentages. For the UIC site,
however, other pollen taxa (Picea, Salix, Alnus) increase at the expense of Betula and Ericaceae pollen toward the
top of the core. A more detailed analysis of pollen data as a record of ecological changes in tundra ecosystems at
local and regional scales is out of scope but can be referred to Cleary (2015) for a brief discussion.

Bulk peat elemental and isotopic data (Figure 3b and Figure S2 in Supporting Information S1): Bulk peat
elemental and isotopic values are useful stratigraphical indicators, but they are controlled by multiple factors
including botanical compositions, C and N sources, and the degree of decomposition (Broder et al., 2012; Jones
et al., 2010; Treat et al., 2016). For cores UIC13‐1 and UIC13‐3, C and OM contents are linearly correlated; on
average core samples contain 46% C in OM. In both cores, the C/N value increases from <20 to >40 while the
δ13C and δ15N values decrease by >4% and >7%, respectively, toward the top. Based on their values in modern
plants (Shaver & Yano, 2016) and corresponding shifts in macrofossil assemblages, we suggest that these sup-
porting data mainly reflect the stratigraphy in botanical compositions of OM from sedge peat to Sphagnum peat
and, secondly, the known “Suess effect” (due to anthropogenic CO2 emissions from fossil fuel burning) on δ

13C.

Cellulose isotopic data (Figure 3d): Sphagnum cellulose δ13C and δ18O data are independent climate proxies in
peat‐based paleoenvironmental reconstructions (Fu et al., 2022; Kaislahti Tillman et al., 2013; Xia et al., 2018).
From the current understanding of these two proxies (Xia et al., 2018), cellulose δ18O data mainly reflect changes
in source water (precipitation) δ18O (Daley et al., 2010). In this high‐latitude region, precipitation δ18O is
positively correlated with air temperature following the “temperature effect” (Daniels et al., 2017; Dans-
gaard, 1964). Cellulose δ13C data, after accounting for the “Suess effect,” mainly reflect changes in Sphagnum
wetness (Xia, Zheng, et al., 2020). For three master cores from both UIC and KRP sites, the Sphagnum cellulose
δ13C and δ18O values generally shift lower and higher, respectively, toward the top but their trends appear to be
reversed in a few topmost core samples. The consistent—albeit not statistically significant—positive correlations
between paired δ18O and “Suess effect”‐corrected Δ13C (the difference between δ13C of atmospheric CO2 and
plant cellulose) in all three cores potentially indicate that higher temperature and lower Sphagnum wetness are
closely coupled (Figure S4 in Supporting Information S1).

Radiocarbon data (Figure 6a; Table S1 in Supporting Information S1): Radiocarbon‐dated peat and soil cores and
multi‐proxy data allow us to unravel the timing and C‐cycle consequence of the past transformation of peat‐
forming ecosystems on the tundra biome. At UIC, the initiation of sedge peat over mineral soils occurred dur-
ing 680–330 cal. yr BP (“Present” is 1950 CE). The onset of Sphagnum over sedge peat occurred at post‐bomb
(post‐1950 CE) dates or as early as 270 cal. yr BP. Both sedge peat initiations and Sphagnum onsets occurred
earlier on upper hillslope positions. At KRP, the master core KRP13‐2 has a basal age of about 4,000 cal. yr BP
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Figure 3.
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and a possible hiatus during 2,500–1,200 cal. yr BP (Figure S3 in Supporting Information S1), after which the
newest sedge peat re‐initiation occurred. For other KRP cores, only younger bounds of sedge peat re‐initiation
ages can be determined (as we are unsure about whether coring had reached the basal peat layer or was
stopped by permafrost) and are as old as 1,000 cal. yr BP. The Sphagnum onsets occurred more often at pre‐bomb
dates as early as 280 cal. yr BP.

Apparent C accumulation rates (Figure 6b; Table 2): The aCAR data from peat cores are often analyzed to reflect
changes in peatland C sink capacity over time (Magnan et al., 2022; Swindles et al., 2015; Xia, Oppedal,
et al., 2020), but they do not directly represent their C balance (Young et al., 2019, 2021). The aCAR from cores
UIC13‐3 and KRP13‐2 based on their age‐depth models (Figure S3 in Supporting Information S1) show large
increases from sedge peat to Sphagnum peat, from ∼5 to ∼40 gC/yr/m2 and from ∼6 to ∼22 gC/yr/m2,
respectively. Other cores also show the same phenomenon based on aCAR between dated intervals, on average
from ∼17 to ∼85 gC/yr/m2. Within Sphagnum peat intervals from well‐dated cores UIC13‐3 and KRP13‐2,
aCAR further show increases after 1960 CE from ∼25 to ∼131 gC/yr/m2 and from ∼12 to ∼84 gC/yr/m2,
respectively. These aCAR values are all mean values and have not considered the uncertainties related to 14C
chronologies. Notably, core UIC13‐3 additionally contains a short interval of increased aCAR at around 1900 CE
(equivalent to 50 cal. yr BP), followed by a short interval of decreased aCAR during the period 1950–1970 CE.

4. Discussion
4.1. Peat Initiations on Tussock Tundra During the Little Ice Age

The initiation of patchy sedge peat over inorganic, mineral‐rich deposits along the hillslope of UIC tussock tundra
occurred within a narrow time window (about 1300–1600 CE)—during the late stage of the gradual, two‐
millennia‐long summer cooling trend in the Arctic (Figures 6a and 6d) (Kaufman et al., 2009; McKay &
Kaufman, 2014). This time window corresponds to the well‐known Little Ice Age (LIA) of the Northern
Hemisphere spanning 1300–1850 CE (IPCC, 2007), which is also well documented by multiple paleoclimate
records in Alaska (Calkin, 1988; Hu et al., 2001; Loso, 2009). Previous studies in the same region found much
older, deeply buried Holocene‐age peat, but their cores were collected from the floodplain peatland of Imnavait
Creek (Eisner, 1991; Nichols et al., 2017).

Peat initiation during climate cooling shown in our records differs from the emerging view that global initiations
of peatlands were primarily triggered by rising growing‐season temperatures that enhance ecosystem productivity
(MacDonald et al., 2006; Morris et al., 2018; Yu et al., 2010). Their results, however, relied on statistical analyses
between the time series of peat basal ages and low‐resolution climate records simulated by a climate model
(Morris et al., 2018) or coarse‐resolution large‐scale synthesis data (MacDonald et al., 2006; Yu et al., 2009). The
basal peat chronology used in those studies often lacks the stratigraphic and dating details as reported here.

Net peat accumulation is determined by the balance between the production and decomposition of OM (Rydin &
Jeglum, 2013; Yu et al., 2009). Our observations suggest that the preservation of OM via slow decomposition
rates—which were driven by cold climates and wet soil conditions under reduced evapotranspiration rates
(Clymo, 1984)—is perhaps an important overlooked mechanism for initial peat buildup. We hypothesize that
regardless of the rates of litter and OM production, small amounts of peat may be preserved over time if decay
rates are sufficiently low. As OM has a lower heat conductivity and higher porosity or water‐retention capacity
than mineral soils, the occurrence of insulating and saturated peat layers on tundra would further inhibit the heat
transfer into the ground, increase the latent heat flux, reduce the water stress‐related limitations for tundra
vegetation, and inhibit microbial decomposition through permafrost aggradation (Beilman et al., 2001; de Vrese
& Brovkin, 2021; Du et al., 2022; Moskal et al., 2001; Runkle et al., 2014). This means that once the initial peat
forms, it can self‐maintain through the feedback system to promote cooler and wetter microclimate conditions

Figure 3. Summary of palaeoecological and geochemical analyses of four master cores (see Figures 4 and 5 for detailed macrofossil and pollen diagrams). For core
KRP13‐2, a 2‐cm gap occurred between the top monolith section and the bottom permafrost core due to sampling complications. (a) Organic matter (OM) percentage
and OM bulk density data. (b) Bulk peat C/N, δ13C, and δ15N data. (c) Macrofossil compositions and zones (yellow lines; dashed ones are boundaries of subzones).
“UOM”means unidentified organic matter. Shrub remains include their woody twigs, roots, and leaves. “Others” include mineral particles, charcoal, and insect remains.
14C‐dated horizons are shown as open dots on the left. (d) Sphagnum cellulose δ13C and δ18O data, and percentages of pollen from shrub taxa (Betula, Salix, Alnus, and
Ericaceae) and pollen zones (pink lines).
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Figure 4. Macrofossil diagrams for cores UIC13‐1, UIC13‐2, UIC13‐3, and KRP13‐2, including their CONISS zones. OM percentage and density data are also plotted.
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favorable to further peat accumulation and stabilization, eventually replacing mineral soils (Belyea, 2009; de
Vrese & Brovkin, 2021). If true, this mechanism can be crucial for peat initiation even if only taking several
centuries. Furthermore, our data show that peat initiation may occur earlier at upper hillslope positions, not
necessarily at the lower, wetter spots (Figure 6a). These findings together provide rare and important insights into
a possible pathway for the initial peatland formation worldwide.

Figure 5. Pollen diagrams for cores UIC13‐3 and KRP13‐2, including their CONISS zones. Shaded curves show ×10 exaggeration where necessary. Note that
indeterminable/unknown pollen grains (not shown) and Sphagnum spores were excluded from the pollen sum in calculating the “pollen percentage” in Figure 3d.
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At the permafrost‐affected peatland site KRP, we speculate that peat initiation occurred as lateral expansion from
the location of KRP13‐2, eventually forming a continued large peatland complex. The initiation and re‐initiation
of sedge peat at this site differ in timings from peat patches of UIC (Figure 6a), suggesting potentially different
controls between peat patches and permafrost peatlands in regard to their genesis (Figure 7).

4.2. Sphagnum Onsets During the Recent Warming Period

The onset of Sphagnum peat with almost 100%OM content over highly humified sedge peat (Figure 3a and Figure
S1 in Supporting Information S1) occurred in two stages at UIC, with the first stage centered at about 1850 CE for
some upper hillslope positions (with a large age uncertainty in pre‐bomb dates) and the second stage during 1950–
1970 CE (Figure 6a). These two stages are within the anthropogenic warming period characterized by rapid
temperature increases (2°C in 200 years) in the Arctic (Kaufman et al., 2009) (Figure 6d). On NSA, the
instrumental temperature record at Utqiagvik (Barrow), Alaska, indicates regional cooling during the period
1950–1975 CE (Figure 6d). This cooling reversal during the long‐term warming trend is documented by our
Sphagnum cellulose δ18O records (Figure 6e). Our pollen data also show the warming‐driven shrub expansion
prior to 1950 CE and a slight reverse afterward (Figure 6c). Still, we caution that Sphagnum cellulose δ18O re-
cords might be affected by other factors, such as changes in moisture source regions (Gaglioti et al., 2017), or the
lengthening of growing seasons. In the latter case, Sphagnum mosses under earlier spring onset may utilize an
increasing amount of low‐δ18O winter precipitation (snowmelt) for carbohydrate biosynthesis (Loisel
et al., 2012). The latter mechanism may explain the observed shifts toward lower δ18O after 2000 CE (Figure 6e),
but it remains to be rigorously tested. Additionally, although the recent shrub expansion has been documented at
another site of the Toolik Lake area (Gałka et al., 2018), all these pollen records from Arctic tundra might be
affected by local factors (de Klerk et al., 2009; Gałka et al., 2023; Oswald et al., 2003).

Figure 6. Temporal changes in peat‐forming ecosystems and tundra environments. Note the different scales for the post‐1950 CE period, during 1,000–0 cal. yr BP, and
during 4,000–1,000 cal. yr BP (“Present” is 1950 CE). (a) Chronology of sedge peat (re‐)initiations and Sphagnum onsets at two study sites labeled at the top. Post‐bomb
dates are shown in triangles (open triangles are highly unlikely dates; see Table S1 in Supporting Information S1), and pre‐bomb dates are shown in 2σ probability bars
(some only have younger bounds). (b) Apparent C accumulation rates from cores UIC13‐3 and KRP13‐2 and their 14C‐dated horizons (open dots in corresponding
colors). (c) Shrub pollen percentages from the same cores as in panel (b). (d) Temperature anomalies in multiple‐year bins relative to the period 1961–1990 CE from the
Arctic 2k compilation (McKay & Kaufman, 2014) and instrumental data in Utqiagvik (Barrow), Alaska (NOAA/NCEI, 2024). (e) Sphagnum cellulose δ18O records
from cores UIC13‐2, UIC13‐3, and KRP13‐2. (f) Sphagnum cellulose Δ13C records after correcting for the “Suess effect” following the method by Leuenberger (2007)
from the same cores as in panel (e).
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The shift from sedge peat to Sphagnum peat is a phenomenon frequently encountered in the evolution of peatlands
and preserved in peat stratigraphy, known as the fen‐bog transition (FBT) (Barber et al., 2003; Hughes &
Barber, 2003; Loisel & Bunsen, 2020; Tahvanainen, 2011; Xia et al., 2024; Yang et al., 2023). FBT describes the
abrupt, step‐like regime shift from a minerotrophic state under the influence of mineral‐rich surface‐ and ground‐
water to an ombrotrophic state relying on nutrient‐poor precipitation as the water source. Loisel and Yu (2013)
have developed a conceptual model for FBT to elaborate on how climate warming can result in the success of dry‐
tolerant, oligotrophic Sphagnum moss species and the transition into a high rate of Sphagnum peat accumulation
through cascading effects on local hydrology, plant production, and decomposition. This model highlights that the
onset of Sphagnum peat could be triggered by climate‐related allogenic forcing that involves multiple reinforcing
feedback loops to sustain or accelerate the autogenic forcing (Loisel & Bunsen, 2020; Loisel & Yu, 2013).

Due to the observed synchronicity of FBT‐like changes in peat patches within the time window of the recent
warming period with no exception, we suggest that these shifts likely occurred in response to century‐long,
climate‐induced, dramatic shifts in site conditions under anthropogenic warming with a comparable mechanism
previously proposed for recent FBT in northern peatlands (Granlund et al., 2022; Loisel & Yu, 2013; Magnan
et al., 2022; Piilo et al., 2023). Interestingly, the fact that peat patches in lower positions on the hillslope shifted to
Sphagnum peat during the decadal‐scale cooling period of 1950–1975 CE seems to contradict the warming‐
induced transition (Figure 6a). However, this contradiction can be reconciled if this decadal‐scale cooling was
too weak in magnitude and impact compared to the prior centennial‐scale warming or did not reverse the
continuous warming‐induced changes in site conditions that have already reached a critical threshold ready for a
regime shift (Belyea, 2009; Loisel & Bunsen, 2020). This interpretation highlights the non‐linear features that
sometimes characterize peat‐forming ecosystems (Belyea, 2009; Belyea & Baird, 2006; Morris et al., 2011). Peat
patches dominated by acidic, nutrient‐poor species S. rubellum and S. lenense are nowadays widespread at UIC,
particularly in the upper hillslope, indicating a state of climate‐driven ombrotrophy for the entire hillslope despite
that our paleoecological records only document a few of them.

The recent onsets of Sphagnum peat also occurred at our paired permafrost peatland site KRP with comparable
timings to that at UIC (Figure 6a). Another permafrost peatland study at the Toolik Lake area showed the same
pattern: the Sphagnum onsets in their two studied cores occurred in 1850–1900 CE and 1940–1950 CE (Gałka
et al., 2018; Taylor et al., 2019). That study also documented the trend toward drier conditions that favor
ombrotrophication based on testate amoebae‐based water‐table depth reconstructions (Taylor et al., 2019). This
region‐wide, consistent transformation in vegetation structure of different peat‐forming ecosystems on the
landscape is remarkable and indicates their common controls despite different local hydrology (waterlogged

Figure 7. Summary diagram showing the ages of peat initiation and Sphagnum onset from soil cores of peat patches at UIC
and from peat cores at KRP.
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peatlands vs. non‐waterlogged peat patches). However, we also acknowledge that vegetation changes across the
Arctic are spatiotemporally heterogeneous and highly sensitive to local substrate or permafrost‐related factors
(Gałka et al., 2023; Oswald et al., 2003; Sim et al., 2019, 2021). With this in mind, our cores were all collected at
spots free of hydrological and topographic variations, aiming to minimize potential local influences and maximize
their climate sensitivities.

4.3. Carbon Accumulation Responses to Ecosystem and Climate Changes

The high aCAR of Sphagnum peat at UIC indicates the ongoing vigorous growth of peat patches with a stable
input of plant litter, which, as predicted from the conceptual model for FBT (Loisel & Bunsen, 2020; Loisel &
Yu, 2013), may have profound consequences for their C sink capacities (Figure 6b; Table 2). Recent studies
reveal that, in addition to their known low decomposability of recalcitrant litter and inhibited microbial
decomposition in acidic environments (Clymo & Hayward, 1982; Rydin & Jeglum, 2013), Sphagnum mosses
have unique biochemical features to promote mineral protection of OM (Zhao et al., 2023). This mechanism is
more important when peat layers are still thin just above mineral soils as in our cases where new colonization of
Sphagnum mosses in peat patches would stabilize the historical C pool and self‐protect new Sphagnum peat
accumulation. However, we cannot quantify the changes in C balance from sedge peat to Sphagnum peat from
aCAR data alone because young peat has only undergone a shorter time of decomposition (Young et al., 2019,
2021; Zhang & Väliranta, 2024). To address this “aCAR” problem, new approaches and expanded data sets are
needed to construct true C accumulation rates or net C balance by accounting for their differential decomposition
histories (Loisel & Yu, 2013; Young et al., 2021; Zhang et al., 2020). However, the same timing of Sphagnum
onsets described earlier and the same pattern of recent aCAR between UIC and other Alaskan peatlands including
KRP (Loisel & Yu, 2013; Taylor et al., 2019) perhaps at least imply that tundra peat patches are similar to
permafrost peatlands in terms of both ecosystem processes and C dynamics (Figure 7). We, therefore, infer from
these high similarities that these meter‐scale, shallow peat patches have already developed the network of sta-
bilizing feedbacks between hydrological and ecological processes that characterize mature peatlands to maintain
their resilience and stability on the landscape (Belyea & Baird, 2006; Morris et al., 2011).

Although the above “aCAR problem” remains to be addressed, we find from the well‐dated core UIC13‐3 that
after Sphagnum peat was established, a period of decreased aCAR within the increasing aCAR trend coincides in
timing with the aforementioned cooling reversal of 1950–1975 CE documented by instrumental and multi‐proxy
data (Figure 4b). These distinguishable responses of C accumulation to subtle temperature changes at decadal
timescales provide tentative support for the idea that climate warming may enhance the C sink capacity of peat‐
forming ecosystems in high‐latitude regions by strongly increasing the rate of plant production while climate
cooling may result in the opposite (Charman et al., 2013; Gallego‐Sala et al., 2018; Yu et al., 2009). As we have
already seen the evidence that these peat patches function like peatlands, if peat patches further grow with
warming and enhance their C sink capacity in the coming decades or centuries, these peat patches may eventually
coalesce to form an “Arctic peatland.”

4.4. Carbon‐Cycle Implications and Future Priorities

The current C balance of Arctic tundra is uncertain, with contrasting signs reported in literature (Commane
et al., 2017; Euskirchen et al., 2017; McGuire et al., 2012; Ramage et al., 2024; Virkkala et al., 2021). For the
Toolik Lake area, tundra ecosystems are sources of CO2 due to strong emissions during non‐growing seasons
(Commane et al., 2017; Euskirchen et al., 2017), and the C loss is thought to accelerate in the future primarily
owing to the positive feedback from permafrost thaw that further increases ecosystem respiration (Hugelius
et al., 2020; Schuur et al., 2009; Turetsky et al., 2020). In this study, we document the young formation ages,
dynamic changes, and ongoing vigorous growth of shallow, patchy peat deposits on Alaskan tussock tundra and
demonstrate the underappreciated, potential role of these northernmost peat‐forming frontiers in strongly shifting
the future trajectory of the pan‐Arctic C cycle as the initial stage of new peatland formation. Indeed, C flux
measurements at the Toolik Lake area have shown that tussock tundra, where ∼13% of the surface has developed
peat patches at UIC based on our field survey, is the weakest C source (∼30 gC/m2/yr) compared to heath and wet
sedge tundra (Euskirchen et al., 2017). Additionally, our observations suggest that the occurrence of new peat in
Arctic tundra can occur on gentle hillslopes widespread on continents and did not rely on peculiar topography and
local waterlogging conditions that typically characterize peat‐forming wetlands (Kleinen et al., 2012). Therefore,
the potential future peatland‐rich landscape in the Arctic as hotspots of C sequestration may provide negative
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feedback to counter C losses in response to warming. This process can be thought of as an analog for the explosive
expansion of modern boreal and sub‐Arctic peatlands that occurred during the early Holocene (Jones & Yu, 2010;
MacDonald et al., 2006; Yu et al., 2010), when atmospheric CO2 concentration declined slowly due to the
increased land biosphere C uptake (Yu et al., 2011).

Below, we outline several important implications of this study with recommended future priorities, which will
enhance the research agenda for understanding whether and how peatlands migrate poleward in a future warming
climate.

First, the areal distribution, C storage, and C sequestration potential of similar tundra peat patches are likely
severely underestimated in other parts of the world (Juselius et al., 2022). From our helicopter expedition and
ground truthing, we have found that such peat patches are widespread on NSA and more developed in other
Alaskan areas that have not yet been investigated, compared to our main study site of UIC (Figures 2a and 2f).
Metcalfe et al. (2018) pointed out that our understanding of climate change impacts across the Arctic is heavily
biased toward studies conducted at the Toolik Lake area, with outstanding gaps in the Canadian Arctic Archi-
pelago and the Arctic coastline of Russia. Therefore, future studies should aim to collect more new data from pan‐
Arctic tundra peat patches in a larger spatial scale and in combination with data synthesis and permafrost
peatland/wetland records to document the continental‐scale patterns of tundra soil and peat C dynamics.

Second, based on our paleoecological records, we have specifically hypothesized that the initial peat buildup on
tundra soils may benefit from cooling‐driven OM preservation and microclimate feedback and that the onset of
Sphagnum growth may further shift the balance between OM production and decomposition or enhance mineral‐
associated OM protection. To firmly test these hypotheses, we need incubation experiments, in situ microclimate
observations, and biochemical composition measurements to improve our knowledge about the relevant mech-
anisms that control tundra peat formation and persistence (Du et al., 2022; Knoblauch et al., 2018; Treat
et al., 2014; von Oppen et al., 2022; Zhao et al., 2023).

Finally, this study also underscores the urgent need to incorporate and improve ecosystem processes related to
peat formation and accumulation into Earth system models to accurately predict the future trajectory of C balance
over Arctic tundra or northern peatlands (Loisel et al., 2021). Although several recent studies have made
important progress toward this goal (Chaudhary et al., 2020; Müller & Joos, 2021; Qiu et al., 2020; Stocker
et al., 2014; Zhao & Zhuang, 2023), not all model predictions incorporate interactions between peatlands and non‐
peatlands, dynamic vegetation changes, and peatland area changes, which we find to be important in simulating
the possible transformation from tundra soils to mature peatlands. For example, future predictions using a
peatland‐specific dynamic global vegetation model (Chaudhary et al., 2022) or a statistical climate‐space model
(Gallego‐Sala et al., 2018) did not have peatland C accumulation on NSA because it is not within the current
peatland area. Another study using a peatland‐specific land surface model can simulate a small increase in
peatland area and C stock on NSA but did not consider vegetation changes (Qiu et al., 2020), despite the statistical
climate‐space model predicting that it is a region suitable for Sphagnum moss expansion (Ma et al., 2022), as
already found in our paleoecological records. Therefore, it is difficult to scale up our data at the current stage due
to the limitation of these model simulations.

5. Conclusion
We use multi‐core and multi‐proxy paleo‐records from the NSA to reveal the genesis and evolution of peat
patches on the Arctic tundra landscape, which fill the fundamental knowledge gap about the connections in
ecosystem functions and processes between shallow peat patches and mature peatlands in northern high latitudes.
We find that peat patches initiated during the LIA as sedge peat above mineral soils and shifted to Sphagnum peat
during the recent warming period with high carbon accumulation rates. This result does not fully support our
aforementioned first hypothesis that peat patches initiated during warm periods, leading us to propose that organic
matter preservation by climate cooling is an overlooked mechanism for initial peat buildup. It does, however,
fully support our second hypothesis that the development sequence and carbon sink capacity of peat patches are
climate‐driven for our sites that are not associated with any local permafrost‐related terrain dynamics. By
comparing with counterpart records of permafrost peatlands in the same region, we find that tundra peat patches
and permafrost peatlands show the same timing and pattern of recent shifts in dominant vegetation and carbon
accumulation toward a potentially stronger carbon sink since the recent warming period. This result supports our
third hypothesis and indicates that shallow peat patches may have already developed the same ecohydrological
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feedback system as mature peatlands to maintain their long‐term stability on the landscape. Taken together, our
study supports the UNEP's report that underscores from a climate policy point of view the global importance of
widespread shallow peat (UNEP, 2022), which is understudied and potentially will transform our understanding
of diverse peat‐forming ecosystems and their role in the global carbon cycle if new observational data, laboratory
experiments, model simulations become available.

Data Availability Statement
All data generated in this study are available on Figshare at: https://doi.org/10.6084/m9.figshare.25728360.v1
(Cleary, 2024). Radiocarbon data are available in Table S1 in Supporting Information S1. The Arctic 2k tem-
perature reconstruction can be accessed from McKay and Kaufman (2014). The Utqiagvik (Barrow) temperature
data can be accessed at: https://www.ncei.noaa.gov/cdo‐web/datasets (NOAA/NCEI, 2024). Modern plant C/N,
δ13C, and δ15N data can be accessed at: https://doi.org/10.6073/pasta/329191b51f7c934d72974eaf0f9bcff9
(Shaver & Yano, 2016). Peat core database used to generate Figure 1 is from Hugelius et al. (2020). The tundra
area is defined based on the ERA5 reanalysis product (Hersbach et al., 2020). Age‐depth models are developed
using the “clam” package on the R program (Blaauw, 2010). The macrofossil and pollen diagrams are made on the
Tilia program, available from https://www.neotomadb.org/apps/tilia (Grimm, 1987).
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